ProLight Opto
 Technology Corporation

ProLight PM2A-1Lxx
1W Power LED
Technical Datasheet
Version: 1.6

Features

- High flux per LED
- Various colors
- Good color uniformity
- RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV
- Superior ESD protection

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

Emitter Mechanical Dimensions

Notes:

1. The Anode side of the device is denoted by a hole in the lead frame.
2. Electrical insulation between the case and the board is required --- slug of device is not electrically neutral. Do not electrically connect either the anode or cathode to the slug.
3. Drawing not to scale.
4. All dimensions are in millimeters.
5. All dimendions without tolerances are for reference only.
6. Please do not bend the leads of the LED, otherwise it will damage the LED.
7. Please do not use a force of over 3 kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.
*The appearance and specifications of the product may be modified for improvement without notice.

Prolight

Star Mechanical Dimensions

Notes:

1. Slots in aluminum-core PCB for M3 or \#4 mounting screw.
2. Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively. All positive pads are interconnected, as are all negative pads, allowing for flexibility in array interconnection.
3. Drawing not to scale.
4. All dimensions are in millimeters.
5. All dimendions without tolerances are for reference only.
6. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.
*The appearance and specifications of the product may be modified for improvement without notice.

ProLight

Flux Characteristics at $350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Radiation Pattern	Color	Part Number		Lumious Flux $\Phi_{\text {V }}$ (lm)	
		Emitter	Star	Minimum	Typical
Lambertian	White	PM2A-1LWE	PM2A-1LWS	76.6	90
	Warm White	PM2A-1LVE	PM2A-1LVS	67.2	81
	Green	PM2A-1LGE	PM2A-1LGS	58.9	70
	Blue	PM2A-1LBE	PM2A-1LBS	10.7	14
	Amber	PM2A-1LAE	PM2A-1LAS	30.6	42
	Red	PM2A-1LRE	PM2A-1LRS	30.6	40

- ProLight maintains a tolerance of $\pm 10 \%$ on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at $\mathbf{3 5 0 m A}, \mathrm{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Color	Forward Voltage $\mathrm{V}_{\mathrm{F}}(\mathrm{V})$			Dynamic Resistance (Ω)	Temperature Coefficient of$\begin{gathered} V_{F}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right) \\ \Delta V_{F} / \Delta \mathrm{T}_{\mathrm{J}} \end{gathered}$	Thermal Resistance Junction to Slug (${ }^{\circ} \mathbf{C} / \mathrm{W}$)
	Min.	Typ.	Max.			
White	2.85	3.5	4.1	1.0	-2.0	10
Warm White	2.85	3.5	4.1	1.0	-2.0	10
Green	2.85	3.5	4.1	1.0	-2.0	10
Blue	2.85	3.5	4.1	1.0	-2.0	10
Amber	1.75	2.2	3.0	2.4	-2.0	10
Red	1.75	2.2	3.0	2.4	-2.0	10

Optical Characteristics at $350 \mathrm{~mA}, \mathrm{~T}_{\boldsymbol{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Radiation Pattern	Color	Dominant Wavelength λ_{D}, or Color Temperature CCT			Spectral Half-width (nm) $\Delta \lambda_{1 / 2}$	Temperature Coefficient of Dominant Wavelength ($\mathrm{nm} /{ }^{\circ} \mathrm{C}$) $\Delta \lambda_{D} / \Delta T_{J}$	Total included Angle (degrees) $\theta_{0.90 \mathrm{~V}}$	Viewing Angle (degrees) $2 \theta_{1 / 2}$
		Min.	Typ.	Max.				
Lambertian	White	4100 K	5500 K	10000 K	---	---	180	130
	Warm White	2700 K	3300 K	4100 K	---	---	180	130
	Green	515 nm	525 nm	535 nm	35	0.04	180	130
	Blue	455 nm	465 nm	475 nm	25	0.04	180	130
	Amber	587 nm	592 nm	597 nm	20	0.05	180	130
	Red	613.5 nm	623 nm	631 nm	20	0.05	180	130

- ProLight maintains a tolerance of $\pm 1 \mathrm{~nm}$ for dominant wavelength measurements.
- ProLight maintains a tolerance of $\pm 5 \%$ for CCT measurements.

ProLight

4

Absolute Maximum Ratings

Parameter	White/Warm Whitel Green/Blue/Amber/Red
DC Forward Current (mA)	350
Peak Pulsed Forward Current (mA)	500
Average Forward Current (mA)	350
ESD Sensitivity	$\pm 4000 \mathrm{~V}$ (Class III)
(HBM per MIL-STD-883E Method 3015.7)	120
LED Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$	105
Aluminum-core PCB Temperature $\left({ }^{\circ} \mathrm{C}\right)$	-40 to +105
Storage \& Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$235^{\circ} \mathrm{C}$
Soldering Temperature $\left({ }^{\circ} \mathrm{C}\right)$	

Photometric Luminous Flux Bin Structure

Color	Bin Code	Minimum Photometric Flux (Im)	Maximum Photometric Flux (Im)
White	T2	76.6	87.4
	U1	87.4	99.6
Warm White	T1	67.2	76.6
	T2	76.6	87.4
	U1	87.4	99.6
	*When	is less than 3050K, U1 bin is not a	
Green	S2	58.9	67.2
	T1	67.2	76.6
	T2	76.6	87.4
Blue	L	10.7	13.9
	M	13.9	18.1
	N	18.1	23.5
Amber	Q	30.6	39.8
	R	39.8	51.7
	S1	51.7	58.9
Red	Q	30.6	39.8
	R	39.8	51.7
	S1	51.7	58.9

- ProLight maintains a tolerance of $\pm 10 \%$ on flux and power measurements.
- The flux bin of the product may be modified for improvement without notice.

ProLight

Color Bin

White and Warm White Binning Structure Graphical Representation

6

Color Bins

White Bin Structure

- Tolerance on each color bin (x, y) is ± 0.01

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Prolight \dagger

Color Bins

Warm White Bin Structure

Bin Code	X	y	$\begin{gathered} \text { Typ. CCT } \\ (\mathrm{K}) \end{gathered}$	Bin Code	X	y	$\begin{gathered} \text { Typ. CCT } \\ \text { (K) } \end{gathered}$
M0	0.453	0.416	2770	Q0	0.409	0.400	3370
	0.444	0.399			0.402	0.382	
	0.459	0.403			0.416	0.389	
	0.467	0.419			0.424	0.407	
M1	0.460	0.430	2770	Q1	0.414	0.414	3370
	0.453	0.416			0.409	0.400	
	0.467	0.419			0.424	0.407	
	0.473	0.432			0.430	0.421	
MA	0.459	0.403	2770	QA	0.416	0.389	3370
	0.444	0.399			0.402	0.382	
	0.436	0.384			0.396	0.367	
	0.451	0.389			0.410	0.374	
MM	0.471	0.451	2770	QM	0.421	0.433	3370
	0.460	0.430			0.414	0.414	
	0.473	0.432			0.430	0.421	
	0.486	0.455			0.438	0.440	
NO	0.438	0.412	2950	R0	0.392	0.391	3650
	0.429	0.394			0.387	0.374	
	0.444	0.399			0.402	0.382	
	0.453	0.416			0.409	0.400	
N1	0.444	0.426	2950	R1	0.414	0.414	3650
	0.438	0.412			0.409	0.400	
	0.453	0.416			0.392	0.391	
	0.460	0.430			0.397	0.406	
NA	0.444	0.399	2950	RA	0.387	0.374	3650
	0.429	0.394			0.383	0.360	
	0.422	0.379			0.396	0.367	
	0.436	0.384			0.402	0.382	
NM	0.454	0.446	2950	RM	0.421	0.433	3650
	0.444	0.426			0.414	0.414	
	0.460	0.430			0.397	0.406	
	0.471	0.451			0.402	0.423	
P0	0.424	0.407	3150	S0	0.392	0.391	3950
	0.416	0.389			0.387	0.374	
	0.429	0.394			0.374	0.366	
	0.438	0.412			0.378	0.382	
P1	0.430	0.421	3150	S1	0.397	0.406	3950
	0.424	0.407			0.392	0.391	
	0.438	0.412			0.378	0.382	
	0.444	0.426			0.382	0.397	
PA	0.429	0.394	3150	SA	0.387	0.374	3950
	0.416	0.389			0.383	0.360	
	0.410	0.374			0.370	0.351	
	0.422	0.379			0.374	0.366	
PM	0.438	0.440	3150	SM	0.402	0.423	3950
	0.430	0.421			0.397	0.406	
	0.444	0.426			0.382	0.397	
	0.454	0.446			0.386	0.413	

- Tolerance on each color bin (x, y) is ± 0.01

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

ProLigh \dagger

Dominant Wavelength Bin Structure

Color	Bin Code	Minimum Dominant Wavelength (nm)	Maximum Dominant Wavelength (nm)
Green	A	515	520
	1	520	525
	2	525	530
	3	530	535
Blue	A	455	460
	1	460	465
	2	465	470
	3	470	475
Amber	2	587.0	589.5
	4	589.5	592.0
	6	592.0	594.5
	7	594.5	597.0
Red	2	613.5	620.5
	4	620.5	631.0

- ProLight maintains a tolerance of $\pm 1 \mathrm{~nm}$ for dominant wavelength measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Forward Voltage Bin Structure

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
White	A	2.85	3.10
	B	3.10	3.35
	D	3.35	3.60
	E	3.60	3.85
	F	3.85	4.10
Warm White	A	2.85	3.10
	B	3.10	3.35
	D	3.35	3.60
	E	3.60	3.85
	F	3.85	4.10
Green	A	2.85	3.10
	B	3.10	3.35
	D	3.35	3.60
	E	3.60	3.85
	F	3.85	4.10
Blue	A	2.85	3.10
	B	3.10	3.35
	D	3.35	3.60
	E	3.60	3.85
	F	3.85	4.10
Amber	A	1.75	2.00
	B	2.00	2.25
	D	2.25	2.50
	E	2.50	2.75
	F	2.75	3.00
Red	A	1.75	2.00
	B	2.00	2.25
	D	2.25	2.50
	E	2.50	2.75
	F	2.75	3.00

- ProLight maintains a tolerance of ± 0.1 for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Spectrum, $\mathbf{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

1. White

2. Warm White

3. Blue, Green, Amber, Red

ProLight
11

Light Output Characteristics

Relative Light Output vs. Junction Temperature at 350mA

ProLight

Forward Current Characteristics, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

1. Forward Voltage vs. Forward Current

2. Forward Current vs. Normalized Relative Luminous Flux

ProLight

Ambient Temperature vs. Maximum Forward Current

1. White, Warm White, Green, Blue ($\mathrm{T}_{\text {JMAX }}=120^{\circ} \mathrm{C}$)

2. Red, Amber ($\left.\mathrm{T}_{\text {JMAX }}=120^{\circ} \mathrm{C}\right)$

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	$25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=\max \mathrm{DC}($ Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	$85^{\circ} \mathrm{C} / 60 \% \mathrm{RH}, \mathrm{I}_{\mathrm{F}}=\max$ DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	$110^{\circ} \mathrm{C}$, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	$-40^{\circ} \mathrm{C}$, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	$-40^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}, 30 \mathrm{~min}$. dwell, <5 min. transfer	200 cycles	Note 2
Non-operating Thermal Shock (TMSK)	$-40^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}, 20 \mathrm{~min}$. dwell, <20 sec. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from $1.2 \mathrm{~m}, 3 \mathrm{X}$		Note 3
Variable Vibration Frequency	$10-2000-10 \mathrm{~Hz}$, log or linear sweep rate, 20 G about 1 min ., $1.5 \mathrm{~mm}, 3 \mathrm{X} / \mathrm{axis}$		Note 3
Solderability	Steam age for 16 hrs ., then solder dip at $260^{\circ} \mathrm{C}$ for 5 sec .		Solder coverage on lead

Notes:

1. Depending on the maximum derating curve.
2. Criteria for judging failure

Item	Test Condition	Criteria for Judgement	
		Min.	Max.
Forward Voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$	$\mathrm{I}_{\mathrm{F}}=\max \mathrm{DC}$	-	Initial Level $\times 1.1$
Luminous Flux or Radiometric Power $\left(\Phi_{\mathrm{V}}\right)$	$\mathrm{I}_{\mathrm{F}}=\max \mathrm{DC}$	Initial Level $\times 0.7$	-
Reverse Current $\left(\mathrm{I}_{\mathrm{R}}\right)$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	-	$50 \mu \mathrm{~A}$

* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.

ProLight

Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.

Heat Plate Soldering Condition

(1) Soldering Process for Solder Paste

Use Solder Mask to print Solder Paste on MCPCB.

Place Emitter on MCPCB.

Put MCPCB on Heat Plate until Solder Paste melt. The Solder Paste sould be melted within 10 seconds. Take out MCPCB out from Heat Plate within 15 seconds.
(2) Soldering Process for Solder Wire

Put MCPCB on Heat Plate.

Place Solder Wire to the solder pad of MCPCB.

Put Emitter on MCPCB. Take the MCPCB out from Heat Plate within 10 seconds.

- Heat plate temperature: $230^{\circ} \mathrm{C}$ max for Lead Solder and $230^{\circ} \mathrm{C}$ max for Lead-Free Solder.
- We recommend using the 58Bi-42Sn eutectic alloy for low-temp. and lead free soldering (melting point = $138^{\circ} \mathrm{C}$).
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Manual Hand Soldering

- For prototype builds or small series production runs it possible to place and solder the emitters by hand.
- Solder tip temperature: $230^{\circ} \mathrm{C}$ max for Lead Solder and $260^{\circ} \mathrm{C}$ max for Lead-Free Solder.
- Avoiding damage to the emitter or to the MCPCB dielectric layer. Damage to the epoxy layer can cause a short circuit in the array.
- Do not let the solder contact from solder pad to back-side of MCPCB. This one will cause a short circuit and damage emitter.

Emitter Tube Packaging

Star Tube Packaging

Notes:

1. Emitter 50 pieces per tube and Star 20 pieces per tube.
2. Drawing not to scale.
3. All dimensions are in millimeters.
4. All dimendions without tolerances are for reference only.
**Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to $30^{\circ} \mathrm{C}$ and humidity less than $40 \% \mathrm{RH}$.

Prolight

Precaution for Use

- Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to $30^{\circ} \mathrm{C}$ and humidity less than $40 \% \mathrm{RH}$. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The slug is to be soldered. If not, please use the heat conductive adhesive.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

