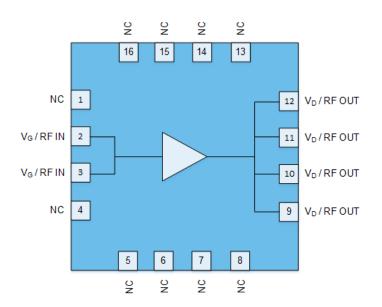
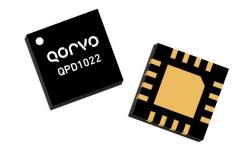
QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

General Description


The Qorvo QPD1022 is a 10 W (P_{3dB}) discrete GaN on SiC HEMT which operates from DC to 12 GHz. This wideband device is a single stage unmatched power amplifier transistor in an over-molded plastic package. The wide bandwidth of the QPD1022 makes it suitable for many different applications from DC to 12 GHz.


The device is housed in an industry-standard 3 x 3 mm surface mount QFN package.

Lead-free and ROHS compliant

Evaluation boards are available upon request.

Functional Block Diagram

16 Pin QFN (3 x 3 x 0.85 mm)

Product Features¹

- Frequency: DC to 12 GHz
- Output Power (P_{3dB}): 11 W¹
- Linear Gain: 24.0 dB¹
- Typical PAE_{3dB}: 68.8 %¹
- Operating Voltage: 32 V
- Low thermal resistance package
- CW and Pulse capable
- 3 x 3 mm package
 Note 1: @ 2 GHz (Loadpull)

Applications

- Military radar
- Civilian radar
- Land mobile and military radio communications
- Test instrumentation
- Wideband or narrowband amplifiers
- Jammers

Ordering Information

Part No.	Description
QPD1022	7" Short Reel – 1000 Pieces
QPD1022SR	7" Short Reel – 100 Pieces
QPD1022EVB01	3.1 – 3.5 GHz EVB

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Absolute Maximum Ratings^{1, 2}

Parameter	Rating	Units
Breakdown Voltage,BV _{DG}	100	V
Gate Voltage Range, V _G	-7 - +2	V
Drain Current, I _D	2.4	А
Gate Current Range, I _G ¹	0.9	mA
Power Dissipation, CW, P _{DISS}	17.5	W
RF Input Power at 3.3 GHz, CW, 50 Ω, T = 25 °C	+29	dBm
Mounting Temperature (30 Seconds)	320	°C
Storage Temperature	-65 to +150	°C

Notes:

1. At Channel temperature of 160°C.

2. Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions^{1, 2, 3, 4}

Parameter	Min	Тур	Max	Units
Operating Temp. Range	-40	+25	+85	°C
Drain Voltage Range, VD	+12	+32	+40	V
Drain Bias Current, I _{DQ}	-	50	-	mA
Drain Current, I _D	-	610	-	mA
Gate Voltage, V _G ⁴	-	-2.8	-	V
Power Dissipation, CW (P _D) ²	-	-	13.8	W
Power Dissipation, Pulsed (P _D) ^{2, 3}	-	-	18.0	W

Notes:

1. Electrical performance is measured under conditions noted in the electrical specifications table. Specifications are not guaranteed over all recommended operating conditions.

2. Back plane of package at 85 °C

3. Pulse Width = 100 us, Duty Cycle = 20%

4. To be adjusted to desired I_{DQ}

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Pulsed Characterization – Load Pull Performance – Power Tuned¹

Parameters	Typical Values Un					Unit	
Frequency, F	2	3	4	6	9	10	GHz
Linear Gain, G _{LIN}	24.0	21.9	19.7	16.1	12.2	10.7	dB
Output Power at 3dB compression point, P _{3dB}	40.4	40.0	40.3	40.4	40.0	39.9	dBm
Power-Added-Efficiency at 3dB compression point, PAE _{3dB}	58.0	52.8	57.0	54.5	45.0	40.0	%
Gain at 3dB compression point	21.0	18.9	16.7	13.1	9.2	7.7	dB

Notes:

1. Test conditions unless otherwise noted: $V_D = 32 V$, $I_{DQ} = 50 \text{ mA}$, Temp = +25 °C

Pulsed Characterization – Load Pull Performance – Efficiency Tuned¹

Parameters			Typica	l Values			Unit
Frequency	2	3	4	6	9	10	GHz
Linear Gain, G _{LIN}	25.6	23.4	21.3	16.9	12.9	11.9	dB
Output Power at 3dB compression point, P _{3dB}	36.8	39.0	38.3	39.4	39.4	38.7	dBm
Power-Added-Efficiency at 3dB compression point, PAE _{3dB}	68.8	66.	69.4	61.2	50.3	46.3	%
Gain at 3dB compression point, G_{3dB}	22.6	20.4	18.3	13.9	9.9	8.9	dB

1- Test conditions unless otherwise noted: $V_D = 32 V$, $I_{DQ} = 50 \text{ mA}$, Temp = +25 °C

RF Characterization – 3.1 – 3.5 GHz EVB Performance At 3.3 GHz¹

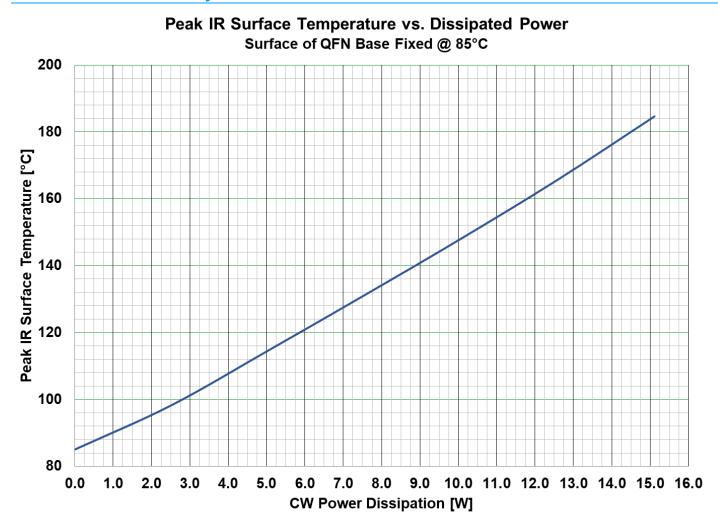
Parameter	Min	Тур	Max	Units
Linear Gain, GLIN	-	16.3	-	dB
Output Power at 3dB compression point, P _{3dB}	_	39.9	_	dBm
Drain Efficiency at 3dB compression point, DEFF _{3dB}	_	58.7	_	%
Gain at 3dB compression point, G _{3dB}	-	13.3	_	dB

Notes:

1. $V_D = 32 V$, $I_{DQ} = 50 mA$, Temp = +25 °C, Pulse Width = 100 us, Duty Cycle = 20%

RF Characterization – Mismatch Ruggedness at 3.3 GHz^{1,2}

Symbol	Parameter	dB Compression	Typical
VSWR	Impedance Mismatch Ruggedness	3	10:1


Notes:

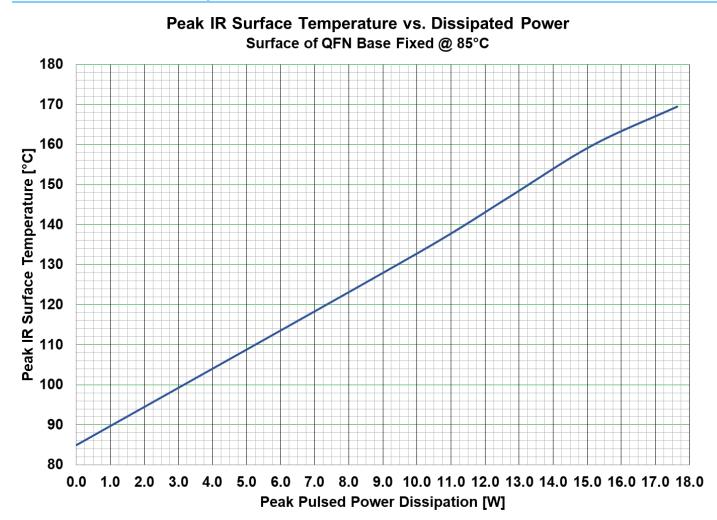
1. Test conditions unless otherwise noted: $T_A = 25 \text{ °C}$, $V_D = 32 \text{ V}$, $I_{DQ} = 50 \text{ mA}$

2. Driving input power is determined at pulsed compression under matched condition at EVB output connector.

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Thermal and Reliability Information – CW¹

Parameter	Conditions	Values	Units
Thermal Resistance, IR ¹ (θ _{JC})	85 °C back side temperature	6.2	°C/W
Peak IR Surface Temperature ¹ (T _{CH})	7.6 W Pdiss, CW	132	°C


Notes:

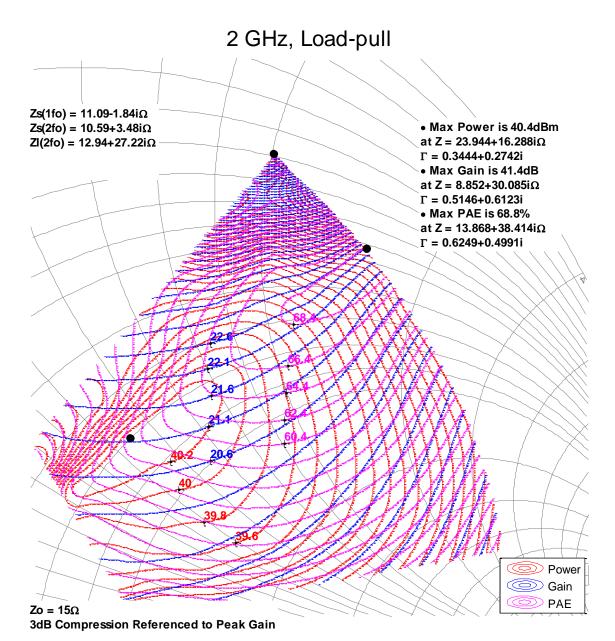
1- Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

QPD1022

10W, 32V, DC – 12 GHz, GaN RF Transistor

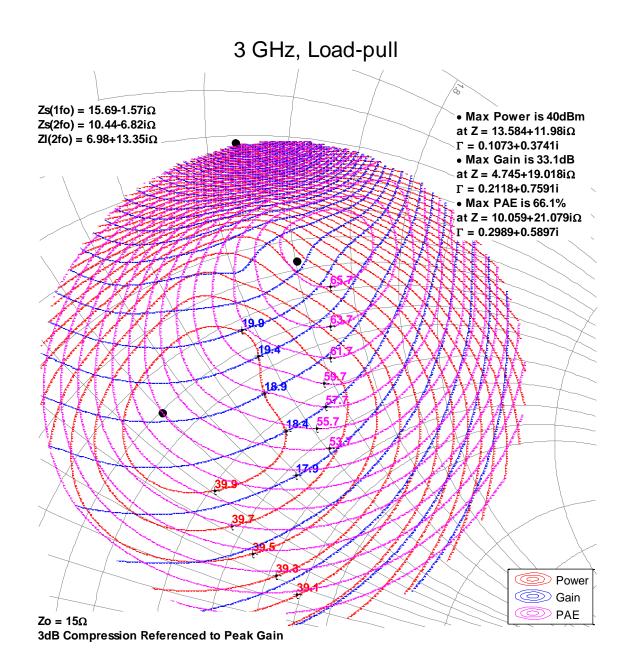
Thermal and Reliability Information – Pulsed¹

Parameter	Conditions	Values	Units
Thermal Resistance, IR ¹ (θ _{JC})	85 °C back side temperature	4.7	°C/W
Peak IR Surface Temperature ¹ (T _{CH})	7.6 W Pdiss, 100us PW, 20% Duty cycle	121	°C

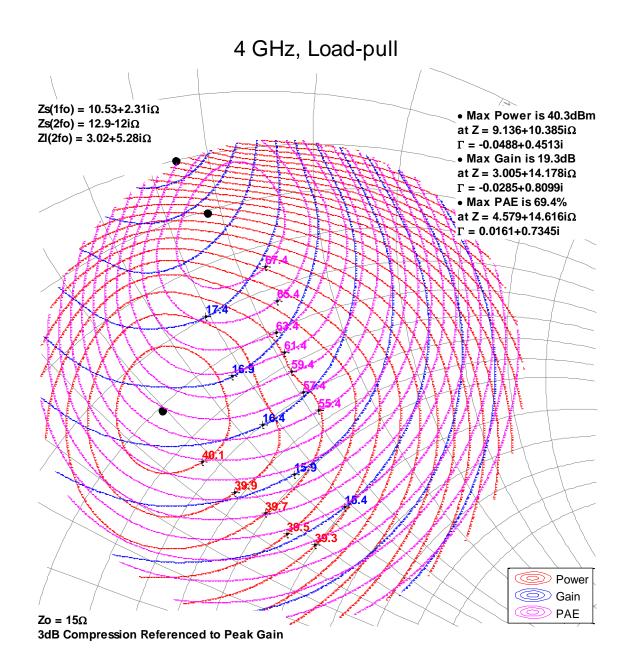

Notes:

1- Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

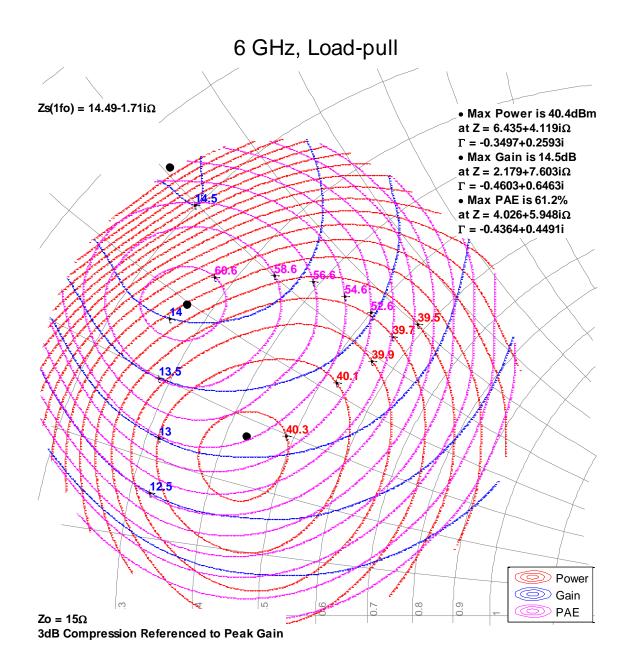

Load Pull Smith Charts^{1, 2}

- 1. Vd = 32 V, I_{DQ} = 50 mA, Pulsed signal with 100 us pulse width and 20 % duty cycle.
- 2. See page 17 for load pull and source pull reference planes.

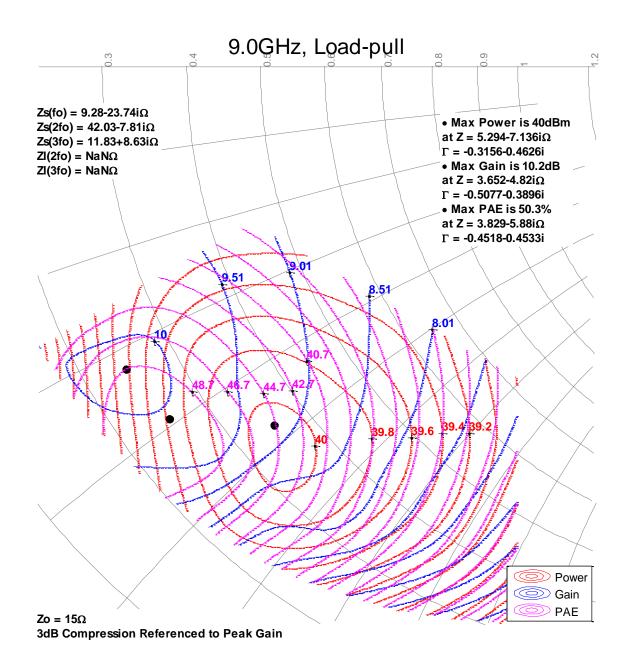

Load Pull Smith Charts^{1, 2}

- 1. Vd = 32 V, I_{DQ} = 50 mA, Pulsed signal with 100 us pulse width and 20 % duty cycle.
- 2. See page 17 for load pull and source pull reference planes.

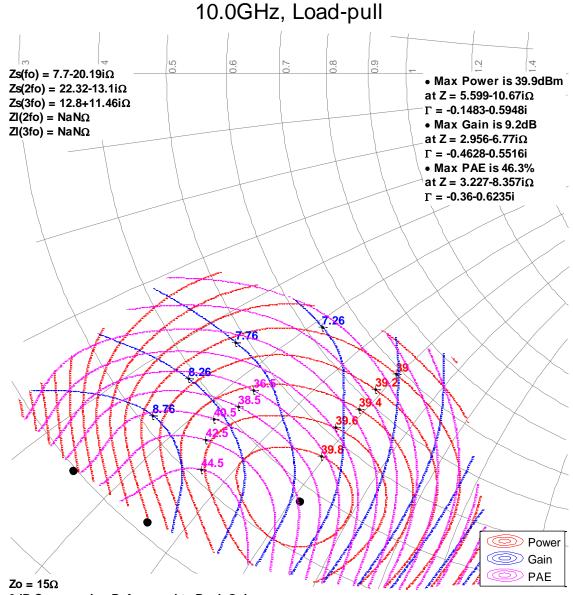
Load Pull Smith Charts^{1, 2}


- 1. Vd = 32 V, I_{DQ} = 50 mA, Pulsed signal with 100 us pulse width and 20 % duty cycle.
- 2. See page 17 for load pull and source pull reference planes.

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor


Load Pull Smith Charts^{1, 2}

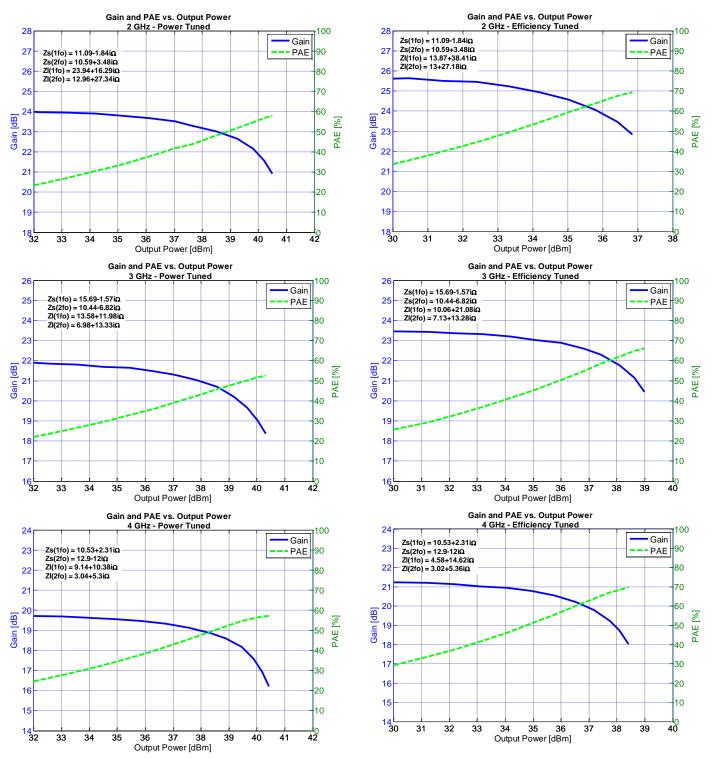
- 1. Vd = 32 V, I_{DQ} = 50 mA, Pulsed signal with 100 us pulse width and 20 % duty cycle.
- 2. See page 17 for load pull and source pull reference planes.


Load Pull Smith Charts^{1, 2}

- 1. Vd = 32 V, I_{DQ} = 50 mA, Pulsed signal with 100 us pulse width and 20 % duty cycle.
- 2. See page 17 for load pull and source pull reference planes.

Load Pull Smith Charts^{1, 2}

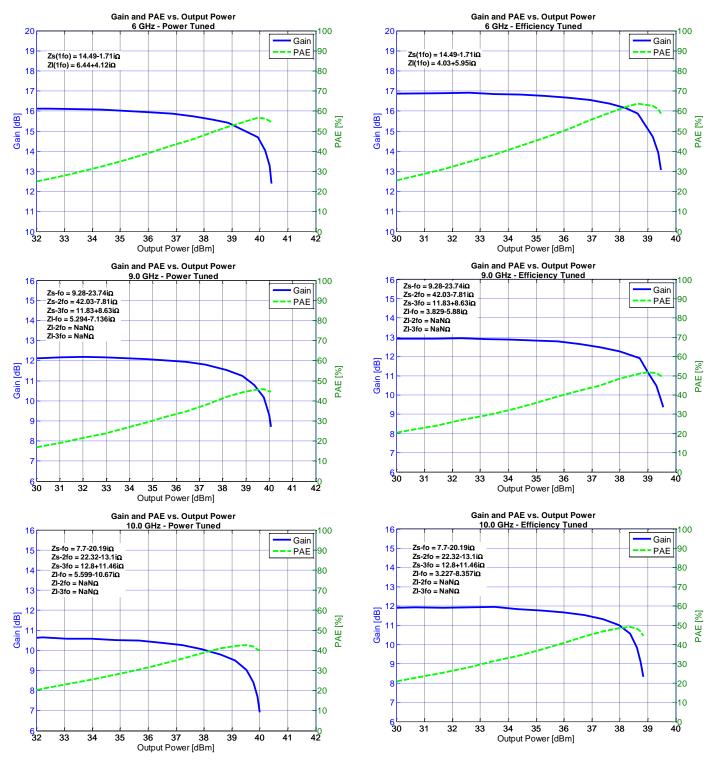
- 1. Vd = 32 V, I_{DQ} = 50 mA, Pulsed signal with 100 us pulse width and 20 % duty cycle.
- 2. See page 17 for load pull and source pull reference planes.


3dB Compression Referenced to Peak Gain

QONOD

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

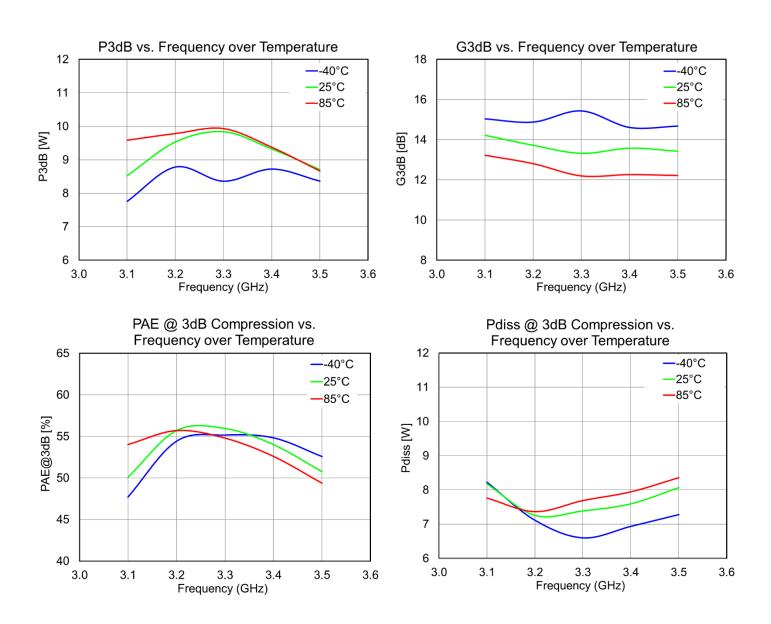
Typical Performance – Load Pull Drive-up^{1, 2}


- Notes:
 - 1. Pulsed signal with 100 us pulse width and 20 % duty cycle, Vd = 32 V, I_{DQ} = 50 mA
 - 2. See page 17 for load pull and source pull reference planes where the performance was measured.

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Typical Performance – Load Pull Drive-up^{1, 2}

- 1. Pulsed signal with 100 us pulse width and 20 % duty cycle, Vd = 32 V, I_{DQ} = 50 mA
- 2. See page 17 for load pull and source pull reference planes where the performance was measured.

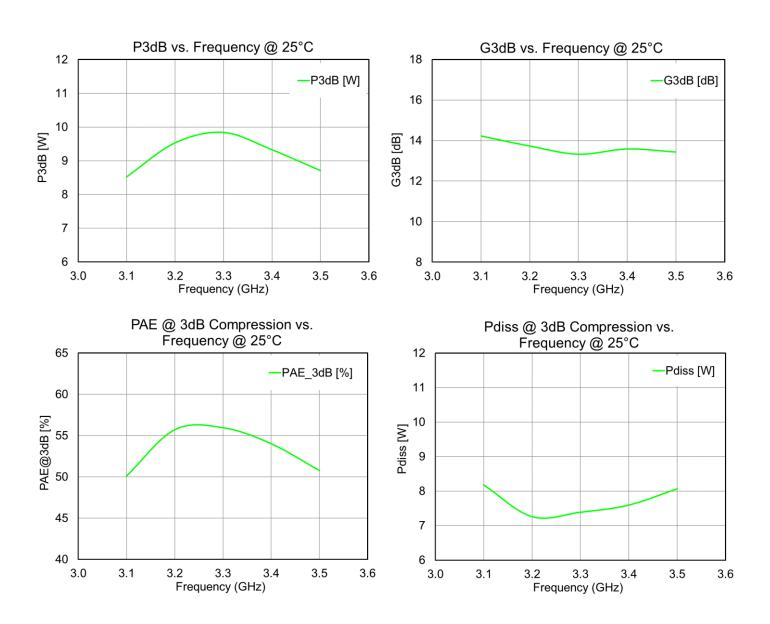


QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Power Driveup Performance Over Temperatures of 3.1 – 3.5 GHz EVB¹

Notes:

1- Vd = 32 V, I_{DQ} = 50 mA, Pulse Width = 100 us, Duty Cycle = 20 %

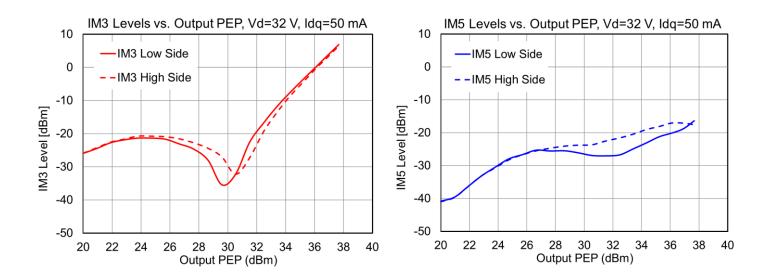

QPD1022

10W, 32V, DC – 12 GHz, GaN RF Transistor

Power Driveup Performance at 25 °C of 3.1 – 3.5 GHz EVB¹

Notes:

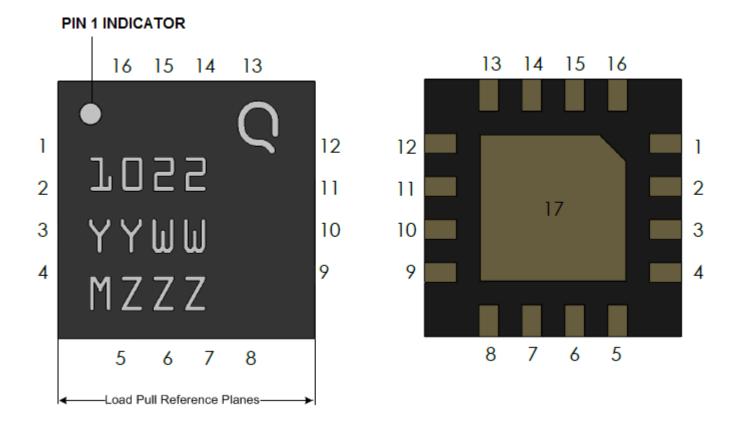
1- Vd = 32 V, I_{DQ} = 50 mA, Pulse Width = 100 us, Duty Cycle = 20 %


QPD1022

10W, 32V, DC – 12 GHz, GaN RF Transistor

Two-Tone Performance at 25 °C of 3.1 – 3.5 GHz EVB¹

Notes:

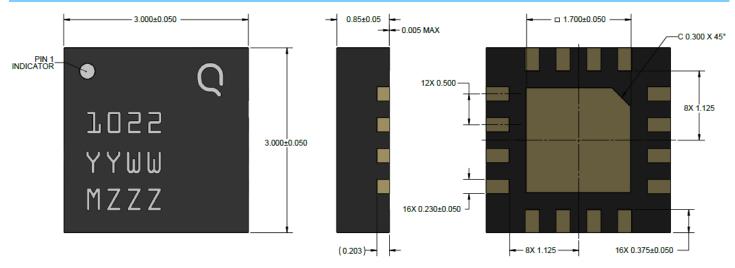

1- Center Frequency = 3.3 GHz. Tone Seperation = 10 MHz.

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Pin Layout¹

QONOQ

Notes:

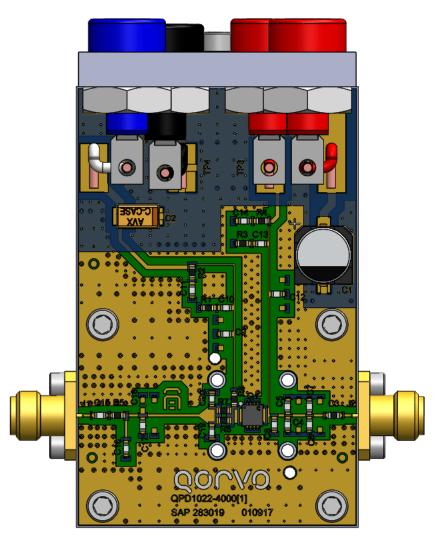

1. The QPD1022 will be marked with the "1022" designator and a lot code marked below the part designator. The "YY" represents the last two digits of the calendar year the part was manufactured, the "WW" is the work week of the assembly lot start, the "MZZZ" is the batch ID.

Pin Description

Pin	Symbol	Description
2, 3	VG / RF IN	Gate voltage / RF Input
9 – 12	VD / RF OUT	Drain voltage / RF Output
1, 4, 5 – 8, 13 – 16	NC	Not Connected
17	Back Plane	Source to be connected to ground

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Mechanical Drawing¹


Notes:

1- All dimensions are in mm, otherwise noted. Tolerance is ± 0.050 mm.

Bias-up Procedure	Bias-down Procedure
1. Set V_G to -4 V.	1. Turn off RF signal.
2. Set ID current limit to 100 mA.	2. Turn off VD
3. Apply 32 V VD.	3. Wait 2 seconds to allow drain capacitor to discharge
4. Slowly adjust VG until ID is set to 50 mA.	4. Turn off VG
5. Set ID current limit to 1 A	
6. Apply RF.	

QOCVO PCB Layout – 3.1 – 3.5 GHz EVB¹

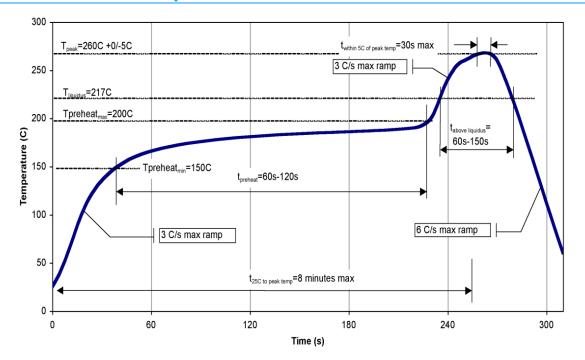
QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Notes:

1- PCB Material is RO4003, 8 mil thick substrate, 1 oz. copper each side.

QPD1022

QONO


10W, 32V, DC - 12 GHz, GaN RF Transistor

Bill Of material – 3.1 – 3.5 GHz EVB

Ref Des	Value	Description	Manufacturer	Part Number
C10, C13	100 pF	C0G 100V 5% 0603 Capacitor	TDK	C1608C0G2E101JT080AA
C11, C14	1 nF	X7R 100V 10% 0603 Capacitor	AVX	06031C102KAT2A
C6 – C8	1.0 pF	RF NPO 250VDC ± 0.05 pF Capacitor	ATC	600S1R0AT250X
C9, C12	9.1 pF	RF NPO 250VDC ± 0.1 pF Capacitor	ATC	600S9R1BT250X
C16	10 pF	RF NPO 250VDC 1% Capacitor	ATC	600S100FT250X
C17	0.2 pF	RF NPO 250VDC ± 0.05 pF Capacitor	ATC	600S0R3AT250X
C15	0.6 pF	RF NPO 250VDC ± 0.05 pF Capacitor	ATC	600S0R6AT250X
C19 – C20	0.8 pF	RF NPO 250VDC ± 0.05 pF Capacitor	ATC	600S0R8AT250X
C4 – C5	2.2 pF	RF NPO 250VDC ± 0.05 pF Capacitor	ATC	600S2R2AT250X
C3	5.6pF	RF NPO 250VDC ± 0.1 pF Capacitor	ATC	600S5R6BT250X
C1	33 uF	80V 20% SVP Capacitor	Panasonic	EEEFK1K330P
C2	10 uF	16V 10% Tantalum Capacitor	AVX	TPSC106KR0500
J1 – J2	-	SMA Panel Mount 4-hole Jack	Gigalane	PSF-S00-000
R5	0 Ohm	0603 5% Thick Film Resistor	ANY	-
R6 – R7	5.1 Ohm	0603 1% Thick Film Resistor	ANY	-
R8	10 Ohm	0603 1% Thick Film Resistor	ANY	-
R1	22 Ohm	0603 5% Thick Film Resistor	ANY	_
R3	5.6 Ohm	0603 5% Thick Film Resistor	ANY	_
R2, R4	33 Ohm	0603 1% Thick Film Resistor	ANY	_

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Recommended Solder Temperature Profile

QPD1022 10W, 32V, DC – 12 GHz, GaN RF Transistor

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1A	ANSI / ESDA / JEDEC JS-001	Caution! ESD-Sensitive Device
ESD-Charged Device Model (CDM)	Class C3	ANSI / ESDA / JEDEC JS-002	
MSL-Moisture Sensitivity Level	MSL3	IPC / JEDEC J-STD-020	

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free
- Halogen Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2022 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.