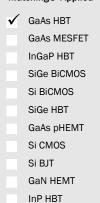


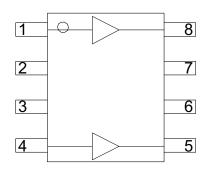
rfmd.com

CGA-6618Z

DUAL CATV 5MHz to 1000MHz HIGH LINEARITY GaAs HBT AMPLIFIER

Package: ESOP-8




Product Description

RFMD's CGA-6681Z is a high performance GaAs HBT MMIC amplifier. Designed with the InGaP process technology for excellent reliability. A Darlington configuration is utilized for broadband performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. The CGA-6618Z contains two amplifiers for use in wideband push-pull CATV amplifiers requiring excellent second order performance. The second or third order non-linearities are greatly improved in the push pull configuration.

Optimum Technology Matching® Applied

Amplifier Configuration

Features

- Lead-Free, RoHS Compliant, and Green Packaging
- Excellent CSO/CTB/XMOD Performance at +34dBmV Output Power Per Tone
- Dual Devices in Each SOIC-8 Package Simplify Push-Pull Configuration PC Board Layout
- ESOP-8 Package

Applications

- CATV Head End Driver and Predriver Amplifier
- CATV Line Driver Amplifier

Devenator	Specification			Unit	Condition	
Parameter	Min. Typ.		Max.	Unit	Condition	
Small Signal Gain		13.8		dB	50MHz	
		14.1		dB	500MHz	
	12.4	13.4	14.4	dB	870MHz	
	12.0	13.0	14.0	dB	1000MHz	
OIP ₂ , Tone Spacing = 1MHz, P _{OUT} per tone -/+6dBm		76.5		dBm	50MHz	
		77.5		dBm	250MHz	
	70.0	72.0		dBm	500MHz	
OIP ₃ , Tone Spacing = 1MHz, P _{OUT} per tone -/+6dBm		38.0		dBm	50MHz	
		39.0		dBm	500MHz	
	38.0	40.0		dBm	870MHz	
Output Power at 1dB Compression		20.0		dBm	50MHz	
		21.0		dBm	500MHz	
	19.5	21.5		dBm	870MHz	
Input Return Loss		15.5		dB	500MHz	
	10			dBm	100MHz to 870MHz	
Output Return Loss		12.5		dB	500MHz	
	9.0			dB	100MHz to 870MHz	
Noise Figure - Balun Insertion Loss Included		5.3		dB	50MHz	
		5.4		dB	500MHz	
		5.6	6.6	dB	870MHz	

Absolute Maximum Ratings

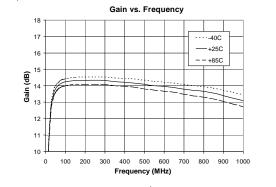
0				
Parameter	Rating	Unit		
Max Device Current (I _D)	240	mA		
Max Device Voltage (V _D)	7	V		
Max RF Input Power	+20	dBm		
Max Junction Temp (T _J)	+150	°C		
Operating Temp Range (T_L)	-40 to +85	°C		
Max Storage Temp	+150	°C		
Min Storage Temp	-65	٥		
Moisture Sensitivity Level	3	MSL		

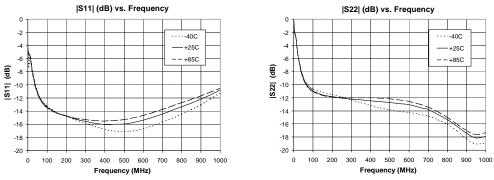
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L)/R_{TH}$, j-l and $T_L = T_{LEAD}$

Caution! ESD sensitive device.

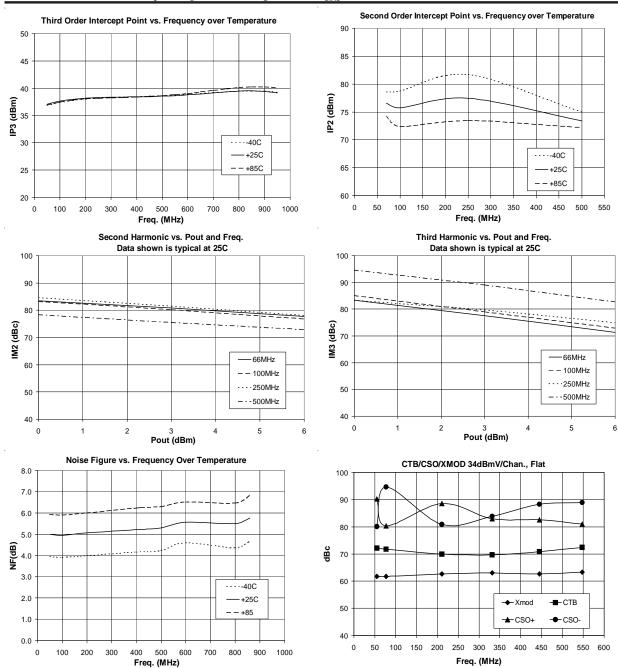
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

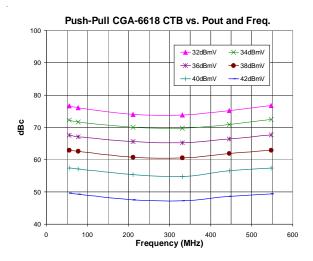

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

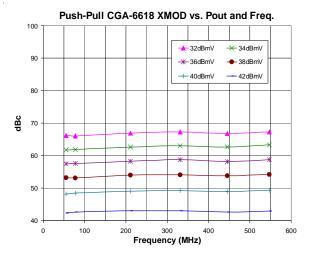

Parameter	Specification			Unit	Condition	
	Min.	Тур.	Max.	Unit	Condition	
Worst Case Over Band, CSO		81		dBc	79 Ch., Flat, +34dBmV	
Worst Case Over Band, CTB		70		dBc	79 Ch., Flat, +34dBmV	
Worst Case Over Band, XMOD		63		dBc	79 Ch., Flat, +34dBmV	
Device Operating Voltage	4.8	5.1	5.4	V		
Device Operating Current	144	160	176	mA		
Thermal Resistance		35		°C/W	(Junction to Lead)	

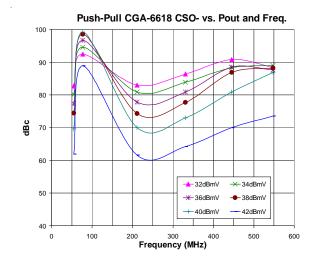
Test Conditions: $V_S = 8V$, $I_D = 160$ mA Typ., $R_{BIAS} = 33\Omega$, $T_L = 25$ °C, $Z_S = Z_L = 75\Omega$, Push Pull Application Circuit



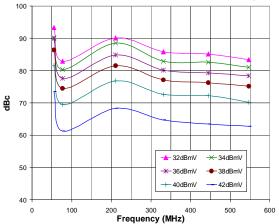
Typical RF Performance: V_s =8V, I_p =160mA @ T_L =+25°C, $R_{_{BIAS}}$ =33 Ohms, Push-Pull Config.

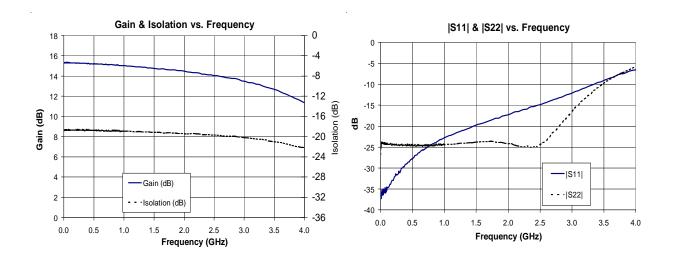

Typical RF Performance: V_s=8V, I_D=160mA @ T_L=+25°C, R_{BIAS}=33 Ohms, Push-Pull Config.

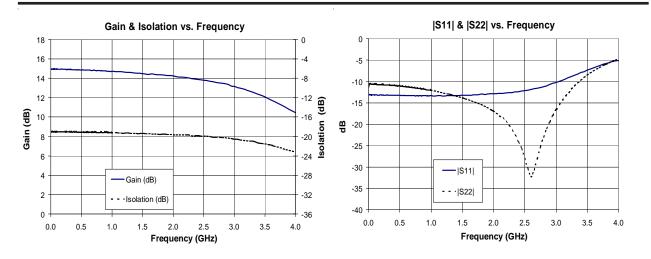


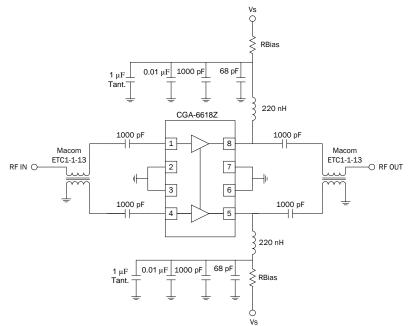


CSO/CTB/XMOD Performance:


V_s=8V, I_D=150mA @ T_L=+25°C, R_{BIAS}=39 Ohms, Push-Pull Config, 79 Ch. Flat Analog, No Digital Channels.

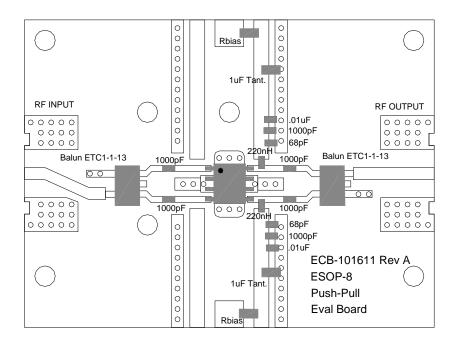


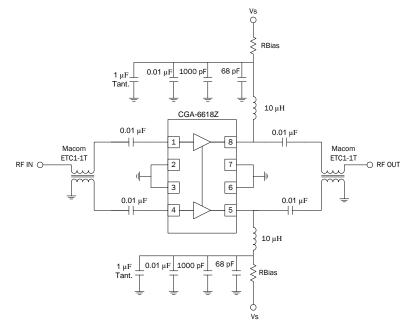




Typical RF Performance - Single Ended - 50 Ohm System $V_s=8V$, $I_b=80$ mA (one amp biased), $T_L=+25^{\circ}$ C, $R_{BIAS}=33$ Ohms

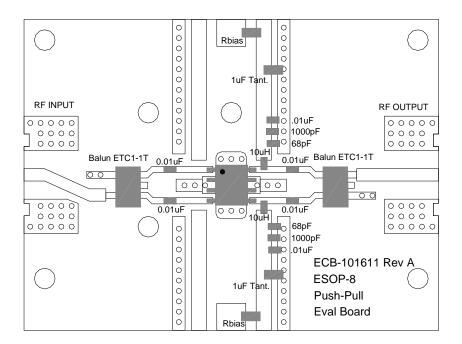
Typical RF Performance - Single Ended - 37.5 Ohm System $V_{s}{=}8V,\ I_{D}{=}80mA$ (one amp biased), $T_{L}{=}{+}25^{\circ}C,\ R_{_{BIAS}}{=}33$ Ohms



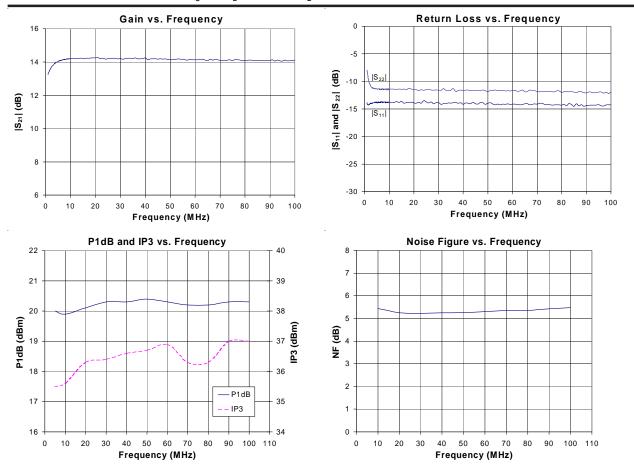


50MHz to 870MHz Application Circuit Schematic

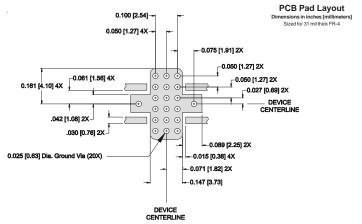
50MHz to 870MHz Evaluation Board Layout



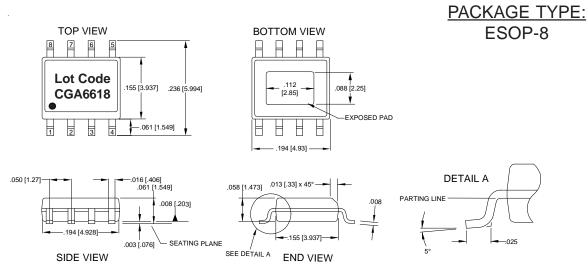
5MHz to 100MHz Application Circuit Schematic


5MHz to 100MHz Evaluation Board Layout

Recommended Bias Resistor Values for I _D =150mA R _{BIAS} =2 (V _S -V _D) / I _D					
Supply Voltage(V _s)	8 V	9 V	12 V	15 V	
R _{BIAS}	33 Ω	47 Ω	82 Ω	120 Ω	
Note: $R_{_{BVAS}}$ provides DC bias stability over temperature.					


5 - 100 MHz Application Circuit: V_s =8V, I_p =160mA @ T_L =+25°C, Push-Pull Config.

RFMD	•))))
rfmd.com	


Pin	Function	Description	
1	RF IN	Device 1. RF input pin. This pin requires the use of an external DC-blocking capacitor as shown in the schematic.	
2, 3, 6, 7	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.	
4	RF IN	Device 2. RF input pin. This pin requires the use of an external DC-blocking capacitor as shown in the schematic.	
5	RF OUT/VCC	Device 2. RF output and bias pin. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC-blocking capacitor should be used in most appl cations. The supply side of the bias network should be well bypassed.	
8	RF OUT/VCC	Device 1. Same as pin 5.	
EPAD	GND	Exposed area on the bottom side of the package must be soldered to the ground plane of the board for optimum thermal and RF performance. Several vias should be located under the EPAD as shown in the recommended land pattern.	

Package Drawing and Marking

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

Part Identification

Ordering Information

Part Number	Description	Reel Size	Devices/Reel
CGA6618ZSB	5-Piece sample bag	N/A	N/A
CGA6618ZSQ	25-Piece sample bag	N/A	N/A
CGA6618ZSR	Dual CATV broadband HBT amp	7"	100 pieces
CGA6618Z	Dual CATV broadband HBT amp	7"	500 pieces
CGA6618ZPCK-410	50MHz to 870MHz eval board	N/A	N/A
CGA6618ZPCK-411	5MHz to 100MHz eval board	N/A	N/A

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo: CGA6618Z

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

CGA6618Z CGA6618ZPCK-411 CGA6618ZPCK-410 CGA6618ZSR