

SN54HCT244, SN74HCT244 SCLS175F - MARCH 2003 - REVISED MAY 2022

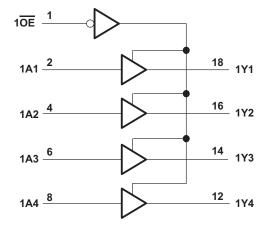
SNx4HCT244 Octal Buffers and Line Drivers With 3-State Outputs

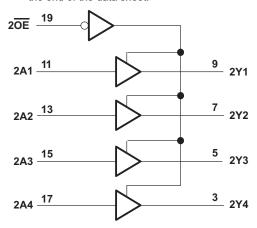
1 Features

- Operating Voltage Range of 4.5 V to 5.5 V
- High-Current Outputs Drive up to 15 LSTTL Loads
- Low Power Consumption: 80-µA Maximum I_{CC}
- Typical t_{pd} = 13 ns
- ±6-mA Output Drive at 5 V
- Low Input Current of 1 µA Maximum
- Inputs Are TTL-Voltage Compatible
- 3-State Outputs Drive Bus Lines and Buffer Memory Address Registers

2 Applications

- Servers
- LED Displays
- **Network Switches**
- Telecom Infrastructure
- **Motor Drivers**
- I/O Expanders


3 Description


These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clockdrivers, and bus-oriented receivers and transmitters. The SNx4HCT244 devices are organized as two 4-bit buffers or drivers with separate outputenable (\overline{OE}) inputs. When \overline{OE} is low, the device passes noninverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the highimpedance state.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)		
SN74HCT244DB	SSOP (20)	7.20 mm × 5.30 mm		
SN74HCT244DW	SOIC (20)	12.80 mm × 7.50 mm		
SN74HCT244N	PDIP (20)	24.33 mm × 6.35 mm		
SN74HCT244NS	SO (20)	12.60 mm × 5.30 mm		
SN74HCT244PW	TSSOP (20)	6.50 mm × 4.40 mm		
SN54HCT244	CDIP (20)	24.20 mm × 6.92 mm		
SIN04FIC 1 244	LCCC (20)	8.89 mm × 8.89 mm		

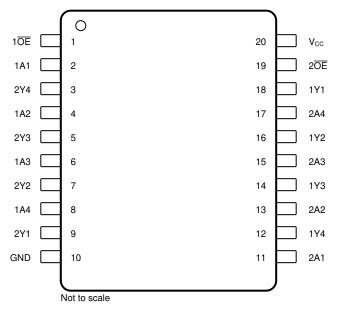
For all available packages, see the orderable addendum at the end of the data sheet.

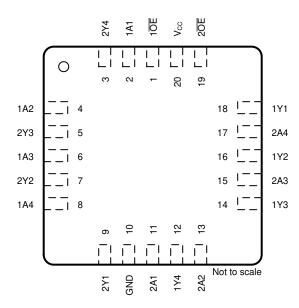
Copyright © 2016, Texas Instruments Incorporated

Logic Diagram (Positive Logic)

Table of Contents

1	8.3 Feature Description	9
	8.4 Device Functional Modes	
1		
2		
3		
4	11.1 Layout Guidelines	11
4		
<mark>5</mark>		
<mark>5</mark>	12.1 Documentation Support	
6	12.2 Related Links	12
6	12.3 Receiving Notification of Documentation Updates	s 1 <mark>2</mark>
7	12.4 Support Resources	12
<mark>7</mark>	12.5 Trademarks	12
8	12.6 Electrostatic Discharge Caution	12
9	12.7 Glossary	12
9	13 Mechanical, Packaging, and Orderable	
9	Information	12
	2 3 4 4 4 5 5 6 6 6 7 7 7 8 8 9 9	1 8.4 Device Functional Modes


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision E (August 2016) to Revision F (May 2022) **Page** Junction-to-ambient thermal resistance values increased. DW was 76.6 is now 109.1, DB was 89.4 is now 122.7, N was 44.8 is now 84.6, NS was 71.8 is now 113.4, PW was 97.4 is now 131.8......5 Changes from Revision D (August 2013) to Revision E (August 2016) **Page** Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Changed Thermal Information table......5

Added ESD warning......9

5 Pin Configuration and Functions

J, W, DB, DW, N, NS, or PW Packages 20-Pin CDIP, CFP, SSOP, SOIC, PDIP, SO, or TSSOP Top View

FK Package 20-Pin LCCC Top View

Pin Functions

	PIN	I/O ⁽¹⁾	DESCRIPTION
NO.	NAME	1/0(*)	DESCRIPTION
1	1 OE	I	Output enable
2	1A1	I	Input
3	2Y4	0	Output
4	1A2	I	Input
5	2Y3	0	Output
6	1A3	I	Input
7	2Y2	0	Output
8	1A4	I	Input
9	2Y1	0	Output
10	GND	_	Ground
11	2A1	I	Input
12	1Y4	0	Output
13	2A2	I	Input
14	1Y3	0	Output
15	2A3	I	Input
16	1Y2	0	Output
17	2A4	I	Input
18	1Y1	0	Output
19	2 OE	I	Output enable
20	V _{CC}	_	Power pin

(1) Signal Types: I = Input, O = Output, I/O = Input or Output.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	CC Supply voltage		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_{l} < 0$ or $V_{l} > V_{CC}$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±35	mA
	Continuous channel current through V _{CC} or G	GND		±70	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT				
SN74H0	SN74HCT244 in DB, DW, N, NS, or PW package							
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	\/				
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V				
SN54H0	CT244 in J, W, or FK pack	age						
V _(ESD)	Electrostatic discharge	Human-body model (HBM)	±1500	V				

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		4.5	5	5.5	V	
V _{IH}	High-level input voltage	V _{CC} = 4.5 V to 5.5 V	2			V	
V _{IL}	Low-level input voltage	V _{CC} = 4.5 V to 5.5 V			0.8	V	
VI	Input voltage	Input voltage			V _{CC}	V	
Vo	Output voltage		0		V _{CC}	V	
Δt/Δν	Input transition rise and fall time				500	ns	
_	On a rating free air temperature	SN54HCT244	-55		125	°C	
T _A	Operating free-air temperature	SN74HCT244	-40		85		

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the *Implications of Slow or Floating CMOS Inputs* application report.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

				SN74HCT244			
		DW (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)	
THERMAL	METRIC	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽¹⁾	109.1	122.7	84.6	113.4	131.8	°C/W
R _{θJC (top)}	Junction-to-case (top) thermal resistance	76	81.6	72.5	78.6	72.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	77.6	77.5	65.3	78.4	82.8	°C/W
$\Psi_{ m JT}$	Junction-to-top characterization parameter	51.5	46.1	55.3	47.1	21.5	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	77.1	77.1	65.2	78.1	82.4	°C/W
R _{θJC (bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIO	NS	V _{cc}	MIN	TYP	MAX	UNIT
			T _A = 25°C		4.4	4.499		
		$I_{OH} = -20 \mu A$	SN54HCT244		4.4			
	\\ -\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		SN74HCT244	151/	4.4			V
V _{OH}	$V_I = V_{IH}$ or V_{IL}		T _A = 25°C	4.5 V	3.98	4.3		V
		$I_{OH} = -6 \text{ mA}$	SN54HCT244		3.7			
			SN74HCT244		3.84			
			T _A = 25°C			0.001	0.1	
		I_{OL} = 20 μ A	SN54HCT244				0.1	
V _{OL} V _I	\/ = \/ or \/		SN74HCT244	4.5 V			0.1	V
	$V_I = V_{IH}$ or V_{IL}		T _A = 25°C	4.5 V		0.17	0.26	
		I _{OL} = 6 mA	SN54HCT244				0.4	
			SN74HCT244				0.33	
		T _A = 25°C				±0.1	±100	nA
l _l	$V_I = V_{CC}$ or 0	SN54HCT244	5.5 V			±1000		
		SN74HCT244				±1000		
	$V_O = V_{CC}$ or 0,	T _A = 25°C				±0.01	±0.5	μA
l _{oz}	$V_I = V_{IH}$ or V_{IL}	SN54HCT244		5.5 V			±10	
		SN74HCT244					±5	
		T _A = 25°C					8	
I _{CC}	$V_I = V_{CC}$ or 0, $I_O = 0$	SN54HCT244		5.5 V			160	μA
		SN74HCT244				80		
	One input at 0.5 V	T _A = 25°C SN54HCT244				1.4	2.4	mA
ΔI _{CC} ⁽¹⁾	or 2.4 V, Other inputs at 0 or			5.5 V			3	
	V _{CC}	SN74HCT244					2.9	

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	T _A = 25°C			3	10	
C _i	SN54HCT244	4.5 V to 5.5 V			10	pF
	SN74HCT244				10	

⁽¹⁾ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

6.6 Switching Characteristics: $C_L = 50 pF$

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 7-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC}	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				T _A = 25°C		15	28	
			4.5 V	SN54HCT244			42	
4	A	Y		SN74HCT244			35	
t _{pd}	A	Ť		T _A = 25°C		13	25	ns
			5.5 V	SN54HCT244			38	
				SN74HCT244			32	
				T _A = 25°C		21	35	
t _{en}			4.5 V 5.5 V	SN54HCT244			53	
	ŌĒ	Y		SN74HCT244			44	
				T _A = 25°C		19	32	ns
				SN54HCT244			48	
				SN74HCT244			40	
				T _A = 25°C		19	35	
			4.5 V	SN54HCT244			53	ns
+	ŌĒ	Y		SN74HCT244			44	
t _{dis}	OE	r		T _A = 25°C		18	32	
			5.5 V	SN54HCT244			48	
				SN74HCT244			40	
				T _A = 25°C		8	12	
			4.5 V	SN54HCT244			18	ns
		Y		SN74HCT244			15	
t _t		T	5.5 V	T _A = 25°C		7	11	
				SN54HCT244			16	
				SN74HCT244			14	

6.7 Switching Characteristics: $C_L = 150 pF$

over recommended operating free-air temperature range, C_L = 150 pF (unless otherwise noted) (see Figure 7-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC}	TEST CONDITIONS	MIN	TYP	MAX	UNIT
			4.5 V	T _A = 25°C		21	45	
				SN54HCT244			68	-
_		V		SN74HCT244			56	
T _{pd}	A	Y		T _A = 25°C		18	40	ns
		5.5 V	SN54HCT244			61		
				SN74HCT244			51	

over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 7-1)

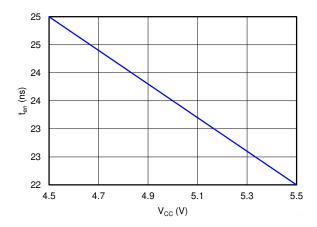
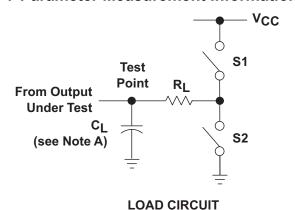
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
				T _A = 25°C		25	52					
t _{en}			4.5 V	SN54HCT244			79					
	ŌĒ	Y		SN74HCT244			65					
	OE .	Y	5.5 V	T _A = 25°C		22	47	ns				
				SN54HCT244			71					
				SN74HCT244			59					
			4.5 V 5.5 V	T _A = 25°C		17	42	ns				
				SN54HCT244			63					
		Y		SN74HCT244			53					
t _t				T _A = 25°C		14	38					
				SN54HCT244			57					
									SN74HCT244			48

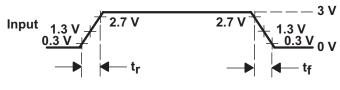
6.8 Operating Characteristics

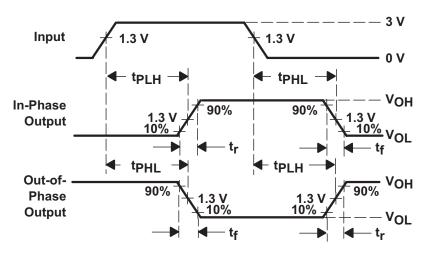
T_A = 25°C

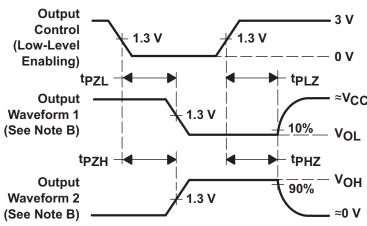
	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per buffer or driver	No load	40	pF

6.9 Typical Characteristics


Figure 6-1. Enable Time vs V_{CC}


7 Parameter Measurement Information



PARAM	METER	RL	CL	S 1	S2	
	tPZH	1 k Ω	50 pF or	Open	Closed	
t _{en}	tPZL	1 K22	150 pF	Closed	Open	
.	tPHZ	1 kΩ	50 pF	Open	Closed	
^t dis	tPLZ	1 K22	50 pr	Closed	Open	
t _{pd} or t _t		_	50 pF or 150 pF	Open	Open	

VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6$ ns, $t_f = 6$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tplz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SNx4HCT244 device is organized as two 4-bit buffers and line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, \overline{OE} must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

8.2 Functional Block Diagram

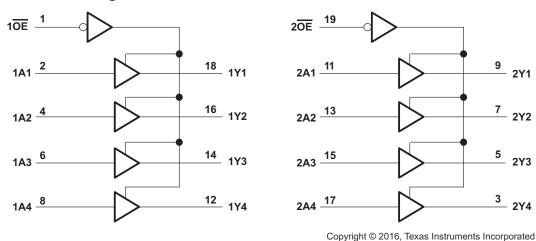


Figure 8-1. Logic Diagram (Positive Logic)

8.3 Feature Description

The SN74HCT244 device can drive up to 15 LSTTL loads. This device has low power consumption of 80- μ A I_{CC}. The SN74HCT244 also has 3 state outputs that allow the outputs to go to high impedance, low or high.

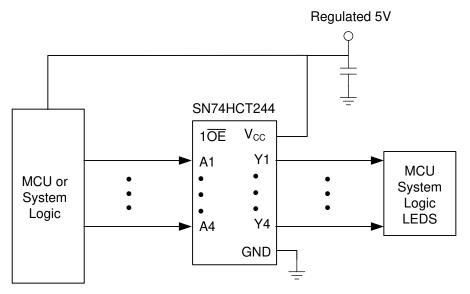
8.4 Device Functional Modes

Table 8-1 lists the functions of the SNx4HC244.

Table 8-1. Function Table

INP	UTS	OUTPUT
OE	Α	Υ
L	Н	Н
L	L	L
Н	Х	Z

9 Application and Implementation


Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN74HC244 is a high-drive CMOS device that can be used for a multitude of bus interface type applications where output drive or PCB trace length is a concern.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 9-1. Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Avoid bus contention because it can drive currents in excess of maximum limits. The high drive creates fast edges into light loads, so consider routing and load conditions to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - For rise time and fall time specifications, see Δt/ΔV in Recommended Operating Conditions.
 - For specified high and low levels, see V_{IH} and V_{IL} in Recommended Operating Conditions.
- 2. Recommend output conditions:
 - Load currents must not exceed the I_O maximum per output and must not exceed the continuous current through V_{CC} or GND total current for the part. These limits are located in *Absolute Maximum Ratings*.
 - Outputs must not be pulled above V_{CC}.

9.2.3 Application Curve

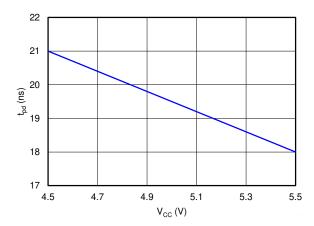


Figure 9-2. Propagation Delay vs V_{CC}

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor. If there are multiple V_{CC} terminals, then TI recommends 0.01- μ F or 0.022- μ F capacitors for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor must be installed as close to the power terminal as possible for the best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs must not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input and gate are used, or when only 3 of the 4-buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 11-1 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient.

11.2 Layout Example

Figure 11-1. Layout Diagram

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 12-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54HCT244	Click here	Click here	Click here	Click here	Click here
SN74HCT244	Click here	Click here	Click here	Click here	Click here

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 10-Jun-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8513001VRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8513001VR A SNV54HCT244J	Samples
5962-8513001VSA	ACTIVE	CFP	W	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8513001VS A SNV54HCT244W	Samples
85130012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	85130012A SNJ54HCT 244FK	Samples
8513001RA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8513001RA SNJ54HCT244J	Samples
JM38510/65755B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755B2A	Samples
JM38510/65755BRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755BRA	Samples
M38510/65755B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755B2A	Samples
M38510/65755BRA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755BRA	Samples
SN54HCT244J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HCT244J	Samples
SN74HCT244DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SN74HCT244DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244DWE4	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244DWG4	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244DWRE4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244DWRG4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HCT244N	Samples

www.ti.com 10-Jun-2022

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74HCT244NE4	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HCT244N	Samples
SN74HCT244NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244PW	ACTIVE	TSSOP	PW	20	70	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SN74HCT244PWE4	ACTIVE	TSSOP	PW	20	70	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SN74HCT244PWG4	ACTIVE	TSSOP	PW	20	70	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SN74HCT244PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SN74HCT244PWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SN74HCT244PWT	ACTIVE	TSSOP	PW	20	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SNJ54HCT244FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	85130012A SNJ54HCT 244FK	Samples
SNJ54HCT244J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8513001RA SNJ54HCT244J	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com 10-Jun-2022

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HCT244, SN54HCT244-SP, SN74HCT244:

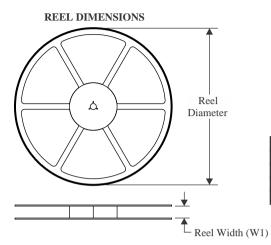
Catalog: SN74HCT244, SN54HCT244

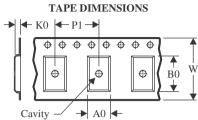
Automotive: SN74HCT244-Q1, SN74HCT244-Q1

● Enhanced Product: SN74HCT244-EP, SN74HCT244-EP

Military: SN54HCT244

Space: SN54HCT244-SP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

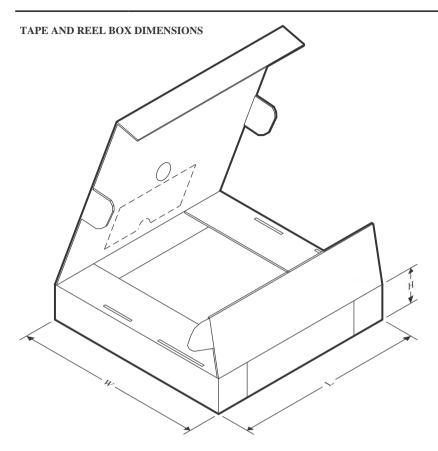
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

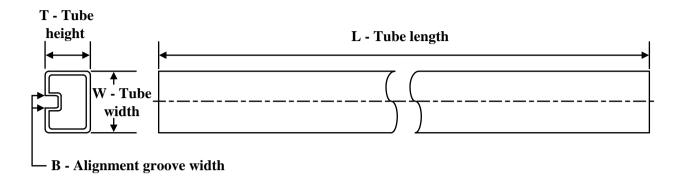
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HCT244DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74HCT244DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74HCT244NSR	so	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74HCT244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HCT244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74HCT244PWRG4	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HCT244PWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

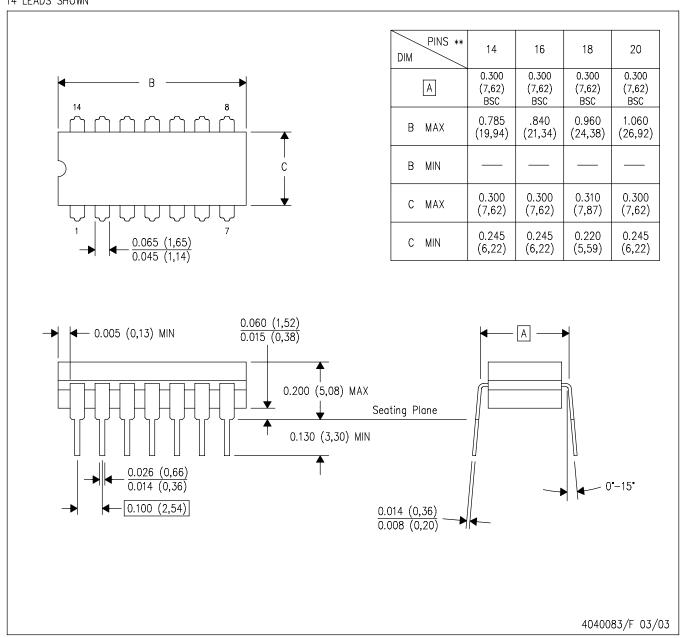
www.ti.com 3-Jun-2022


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HCT244DBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74HCT244DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HCT244NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74HCT244PWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74HCT244PWR	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74HCT244PWRG4	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74HCT244PWT	TSSOP	PW	20	250	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-8513001VSA	W	CFP	20	1	506.98	26.16	6220	NA
85130012A	FK	LCCC	20	1	506.98	12.06	2030	NA
JM38510/65755B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
M38510/65755B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
SN74HCT244DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74HCT244DWE4	DW	SOIC	20	25	507	12.83	5080	6.6
SN74HCT244DWG4	DW	SOIC	20	25	507	12.83	5080	6.6
SN74HCT244N	N	PDIP	20	20	506	13.97	11230	4.32
SN74HCT244NE4	N	PDIP	20	20	506	13.97	11230	4.32
SN74HCT244PW	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74HCT244PWE4	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74HCT244PWG4	PW	TSSOP	20	70	530	10.2	3600	3.5
SNJ54HCT244FK	FK	LCCC	20	1	506.98	12.06	2030	NA

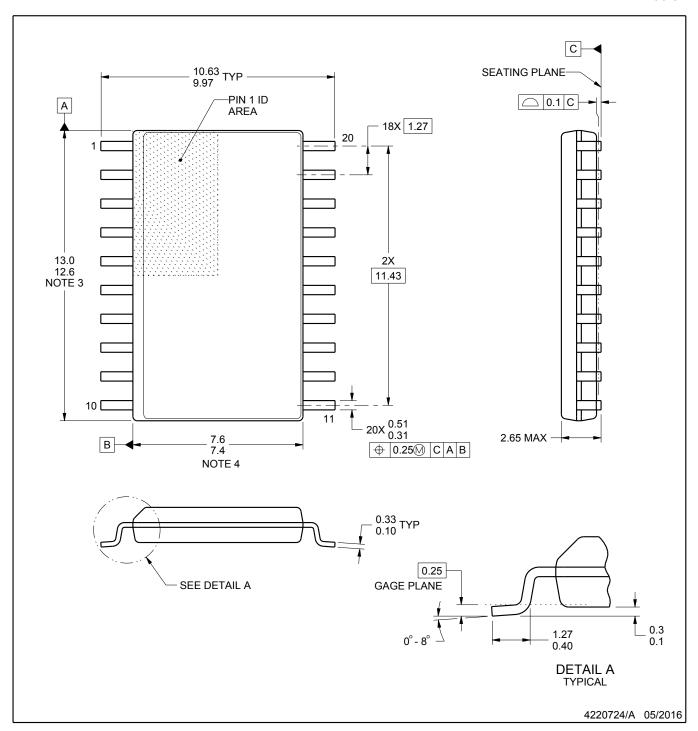
14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

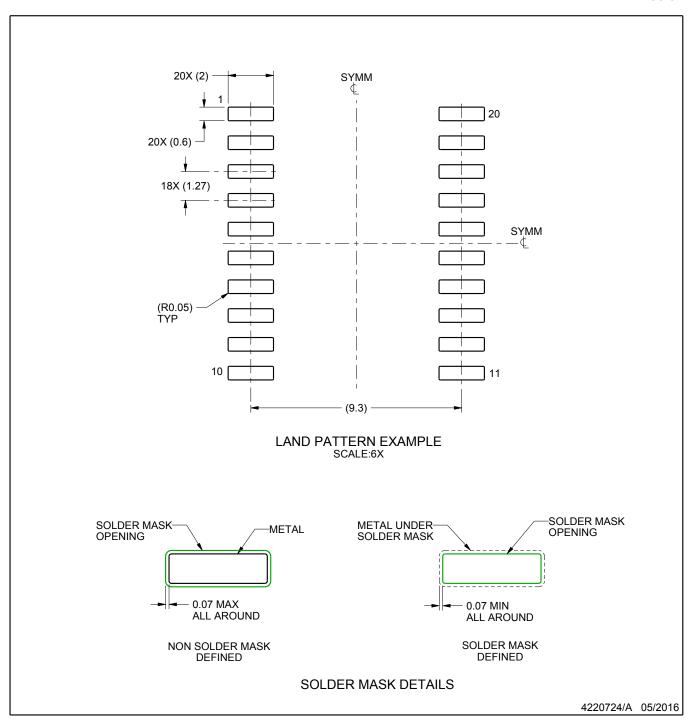
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

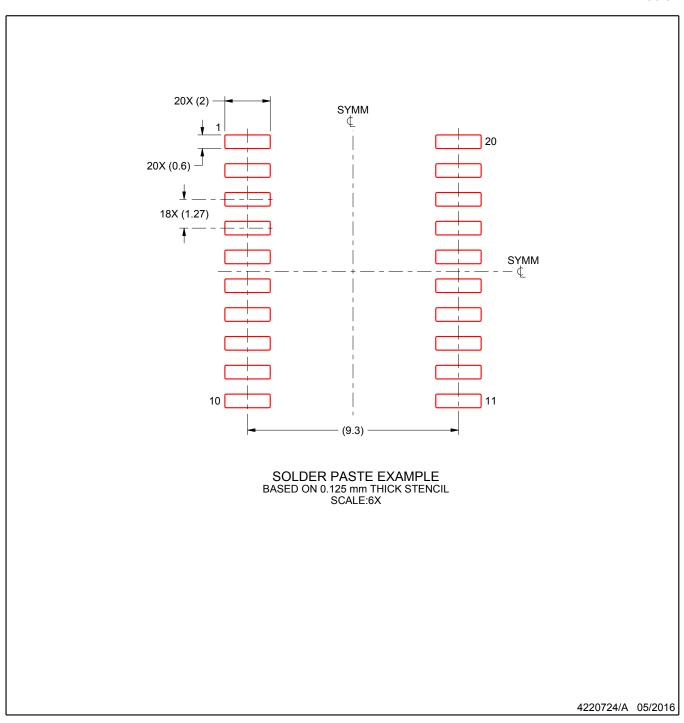
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

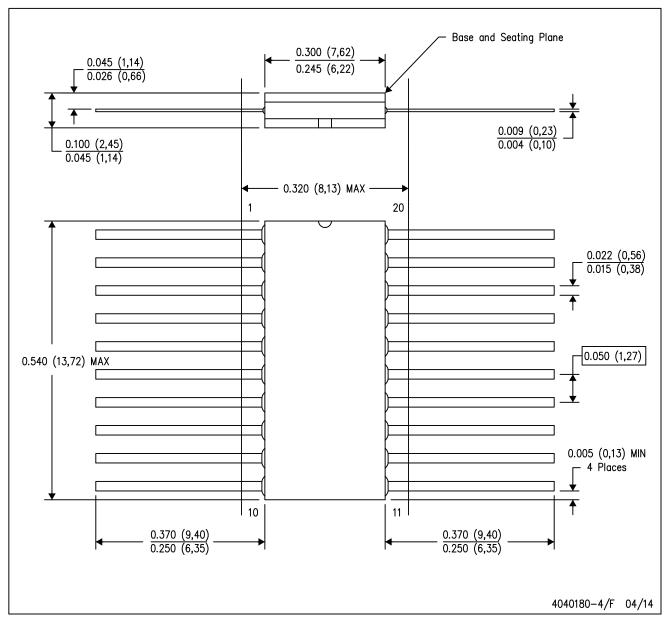
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

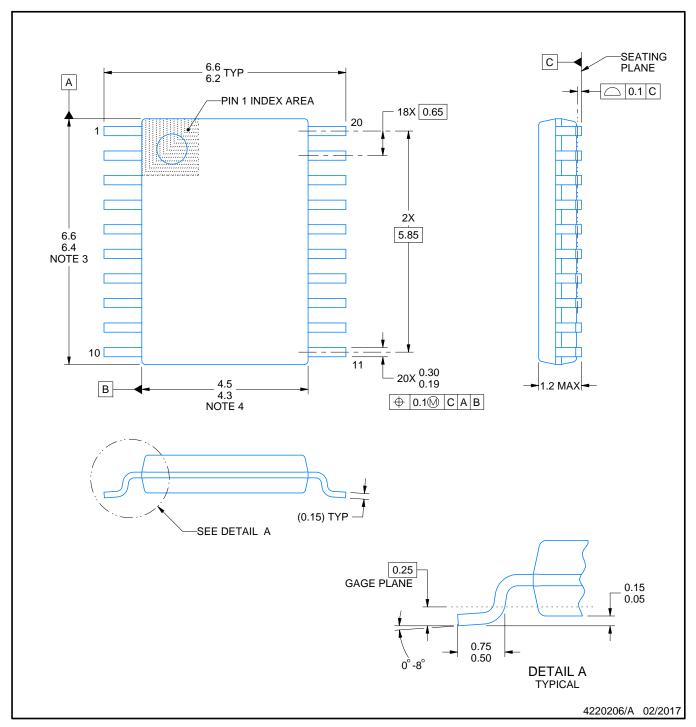
SOIC


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

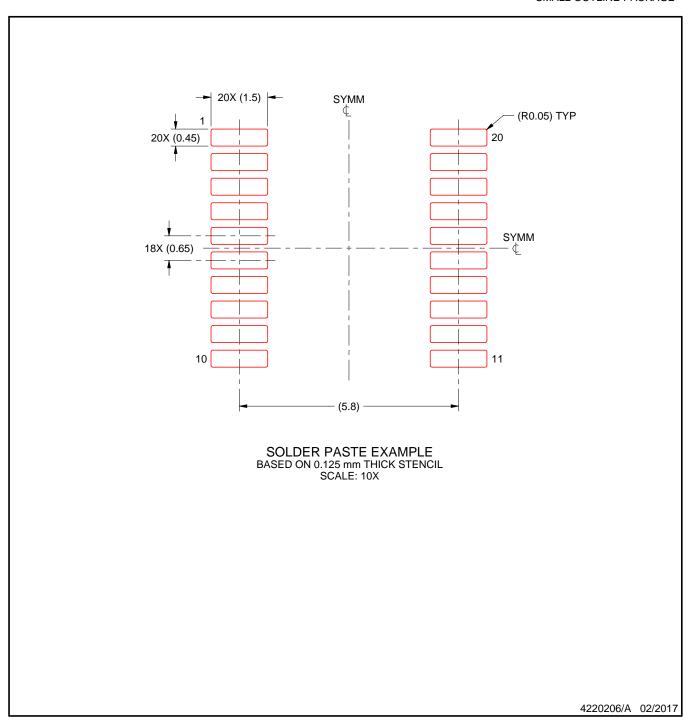
 D. Index point is provided on cap for terminal identification only.

 E. Falls within Mil—Std 1835 GDFP2—F20

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

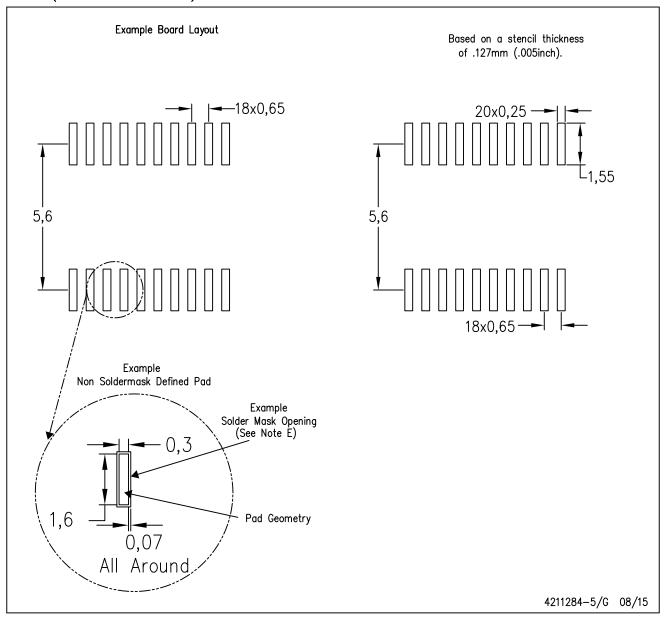
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

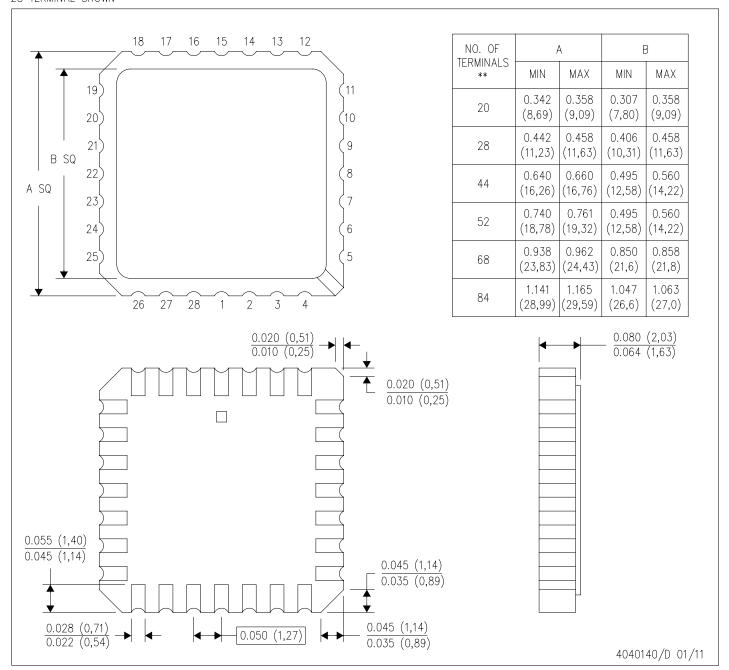
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

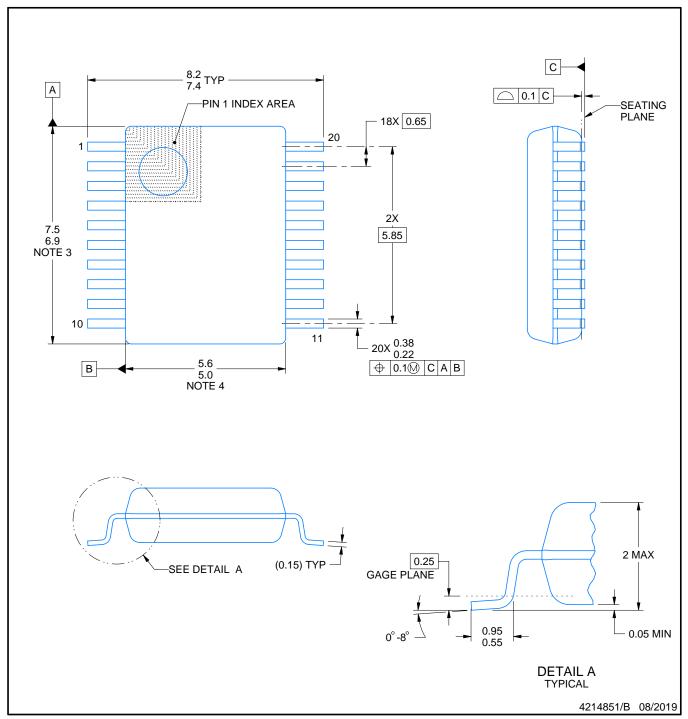
PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

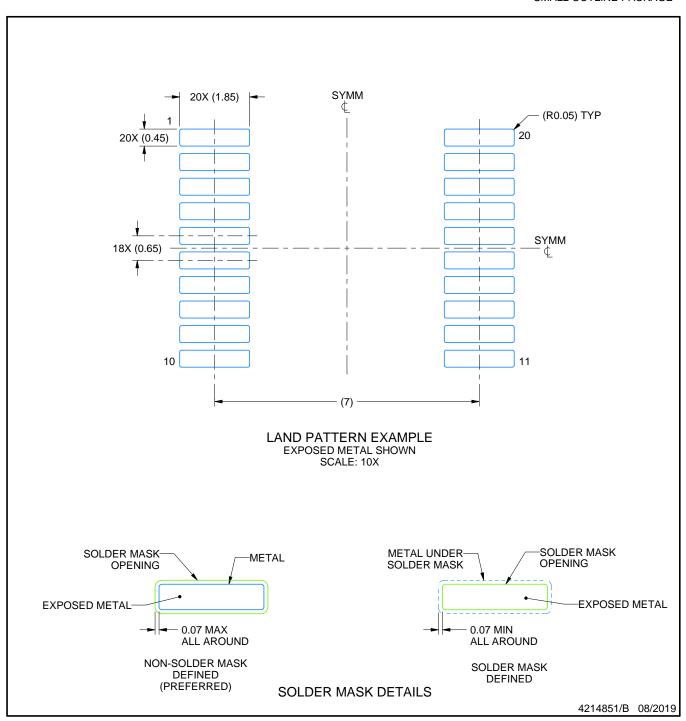

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER


28 TERMINAL SHOWN

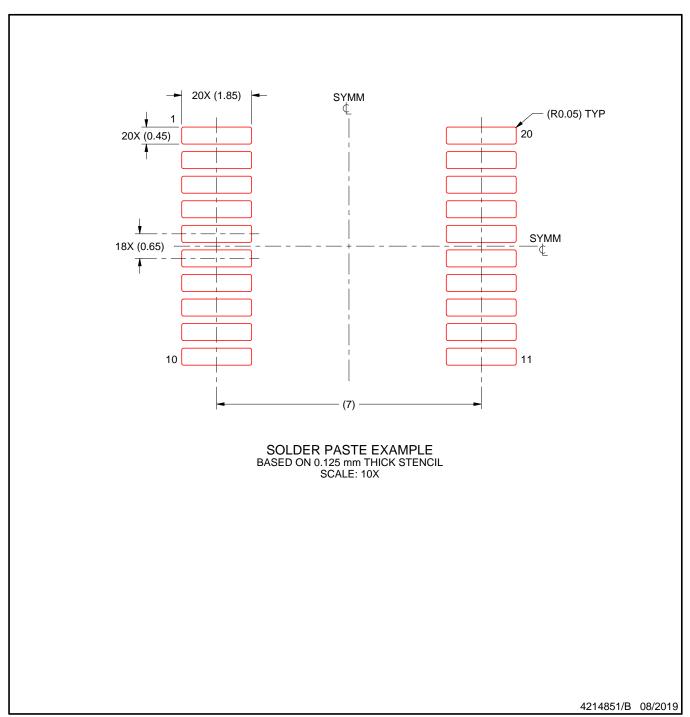
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



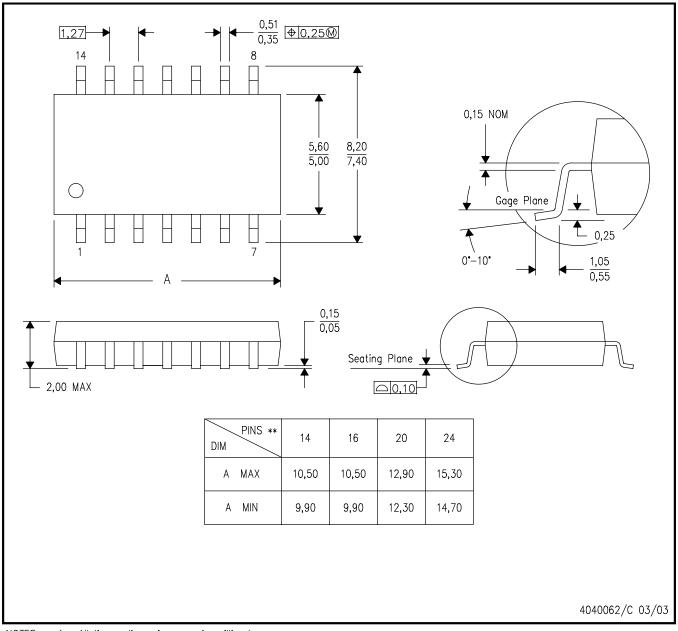
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated