MBRM130LT1G, NRVBM130LT1G, MBRM130LT3G, NRVBM130LT3G # **Surface Mount Schottky Power Rectifier** # POWERMITE® Power Surface Mount Package The SchottkyPOWERMITE® employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop–reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, thePOWERMITE® has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC–DC and DC–DC converters, reverse battery protection, and "ORing" of multiple supply voltages and any other application where performance and size are critical. #### **Features** - Low Profile Maximum Height of 1.1 mm - Small Footprint Footprint Area of 8.45 mm² - Low V_E Provides Higher Efficiency and Extends Battery Life - Supplied in 12 mm Tape and Reel - Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink - ESD Ratings: - ♦ Human Body Model = 3B (> 16 kV) - ♦ Machine Model = C (> 400 V) - AEC-Q101 Qualified and PPAP Capable - NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements - All Packages are Pb-Free* # **Mechanical Characteristics:** - POWERMITE® is JEDEC Registered as D0-216AA - Case: Molded Epoxy - Epoxy Meets UL 94 V-0 @ 0.125 in - Weight: 16.3 mg (Approximately) - Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Maximum for 10 Seconds ### ON Semiconductor® http://onsemi.com # SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES, 30 VOLTS POWERMITE CASE 457 PLASTIC #### MARKING DIAGRAM M = Date Code BCG = Device Code ■ = Pb-Free Package #### ORDERING INFORMATION | Device | Package | Shipping [†] | | |--------------|------------------------|-------------------------|--| | MBRM130LT1G | POWERMITE
(Pb-Free) | 3,000 /
Tape & Reel | | | NRVBM130LT1G | POWERMITE
(Pb-Free) | 3,000 /
Tape & Reel | | | MBRM130LT3G | POWERMITE
(Pb-Free) | 12,000 /
Tape & Reel | | | NRVBM130LT3G | POWERMITE
(Pb-Free) | 12,000 /
Tape & Reel | | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # MBRM130LT1G, NRVBM130LT1G, MBRM130LT3G, NRVBM130LT3G #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|--|------------|------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 30 | V | | Average Rectified Forward Current (At Rated V_R , $T_C = 135^{\circ}C$) | Io | 1.0 | А | | Peak Repetitive Forward Current
(At Rated V _R , Square Wave, 100 kHz, T _C = 135°C) | I _{FRM} | 2.0 | А | | Non-Repetitive Peak Surge Current
(Non-Repetitive peak surge current, halfwave, single phase, 60 Hz) | I _{FSM} | 50 | А | | Storage Temperature | T _{stg} | -55 to 150 | °C | | Operating Junction Temperature | TJ | -55 to 125 | °C | | Voltage Rate of Change
(Rated V _R , T _J = 25°C) | dv/dt | 10,000 | V/μs | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---|--|-----------------|------| | Thermal Resistance, Junction-to-Lead (Anode) (Note 1) Thermal Resistance, Junction-to-Tab (Cathode) (Note 1) Thermal Resistance, Junction-to-Ambient (Note 1) | R _{tjl}
R _{tjtab}
R _{tja} | 35
23
277 | °C/W | ^{1.} Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10 #### **ELECTRICAL CHARACTERISTICS** | Characteristic | Symbol | Va | lue | Unit | |---|----------------|-----------------------|-----------------------|------| | Maximum Instantaneous Forward Voltage (Note 2), See Figure 2 | V _F | T _J = 25°C | T _J = 85°C | V | | $(I_F = 0.1 \text{ A})$
$(I_F = 1.0 \text{ A})$
$(I_F = 3.0 \text{ A})$ | | 0.30
0.38
0.52 | 0.20
0.33
0.50 | | | Maximum Instantaneous Reverse Current (Note 2), See Figure 4 | I _R | T _J = 25°C | T _J = 85°C | mA | | (V _R = 30 V)
(V _R = 20 V)
(V _R = 10 V) | | 0.41
0.13
0.05 | 11
5.3
3.2 | | 10 ^{2.} Pulse Test: Pulse Width \leq 250 μ s, Duty Cycle \leq 2% IF INSTANTANEOUS FORWARD CURRENT (AMPS) $T_J = 150^{\circ}C$ 1.0 $T_J = 125^{\circ}C$ $T_{J} = 85^{\circ}$ $T_J = 25^{\circ}C$ -40°C 0.1 0.2 0.3 0.4 0.5 0.6 V_F, MAXIMUM INSTANTANEOUS FORWARD VOLTAGE (VOLTS) Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage ### MBRM130LT1G, NRVBM130LT1G, MBRM130LT3G, NRVBM130LT3G ^{*} Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where r(t) = thermal impedance under given conditions, Pf = forward power dissipation, and Pr = reverse power dissipation This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed. # MBRM130LT1G, NRVBM130LT1G, MBRM130LT3G, NRVBM130LT3G Figure 9. Thermal Response Junction to Lead Figure 10. Thermal Response Junction to Ambient #### **POWERMITE** CASE 457-04 ISSUE F **DATE 14 MAY 2013** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. | | MILLIN | IETERS | INCHES | | |-----|----------|--------|-----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.75 | 2.05 | 0.069 | 0.081 | | В | 1.75 | 2.18 | 0.069 | 0.086 | | C | 0.85 | 1.15 | 0.033 | 0.045 | | D | 0.40 | 0.69 | 0.016 | 0.027 | | F | 0.70 | 1.00 | 0.028 | 0.039 | | Н | -0.05 | +0.10 | -0.002 | +0.004 | | J | 0.10 | 0.25 | 0.004 | 0.010 | | K | 3.60 | 3.90 | 0.142 | 0.154 | | L | 0.50 | 0.80 | 0.020 | 0.031 | | R | 1.20 | 1.50 | 0.047 | 0.059 | | S | 0.50 REF | | 0.019 REF | | #### **GENERIC MARKING DIAGRAMS*** STYLE 1: PIN 1. CATHODE 2. ANODE STYLE 2: PIN 1. ANODE OR CATHODE CATHODE OR ANODE (BI-DIRECTIONAL) 2. STYLE 3: PIN 1. ANODE 2. CATHODE #### Μ М 2 2 XXX. XXX. STYLE 1 STYLE 2 XXX = Specific Device Code = Date Code = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98ASB14853C | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | POWERMITE | | PAGE 1 OF 1 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative